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ABSTRACT

Tabu search (TS) has provided advances for solving difficult optimization problems
in many domains. At the same time, fundamental TS strategies are often not applied
as effectively as they might be, and their underlying rationale is often not completely
understood. We examine basic concepts and principles of tabu search, emphasizing
those that have sometimes led to applying the label “adaptive memory programming”
to this class of methods.

The goal of this paper is to focus on key themes that are given inadequate atten-
tion in many treatments of tabu search. We also examine basic TS strategies that
provide useful alternatives to procedures often associated with “evolutionary” or “ge-
netic” algorithms. Specific tabu search applications are also summarized to provide a
clearer understanding of settings where the method is being used. Finally, we include
an Appendix that identifies the elements of tabu search that are most neglected in
implementations, and that can significantly improve its performance.

1 INTRODUCTION

Metaheuristic procedures have benefitted from numerous advances in recent
years. Developments in new implementations of tabu search (TS) have been
especially productive. Most striking are the advances enabling difficult practical
problems to be handled with greater effectiveness than previously envisioned
possible. At the same time, adaptive memory strategies of tabu search are
becoming incorporated into other methods, both significantly modifying the
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operation of these methods and changing the perspectives on which they are

based.

This paper focuses on three main themes. First, in Section 1 we examine the
adaptive memory rationale that underlies tabu search, and which has sometimes
given this approach the label adaptive memory programming. We discuss key
precepts that underlie the method and issues that are raised for exploiting
them more fully. Next, in Section 2 we examine comparisons and contrasts
between specific strategies of tabu search, particularly those based on the scat-
ter search model, and currently popular strategies based on models of nature,
as represented by approaches that are beginning to be embedded in genetic
algorithms (GAs). We show how classical GA procedures and their more mod-
ern “evolutionary” counterparts can be improved by strategies for combining
solutions that are made available by alternative frameworks. A fuller appli-
cation of these frameworks that incorporates adaptive memory designs of TS
offers a useful alternative to GA based approaches. In Section 3 we present
a collection of tabu search vignettes, which give brief descriptions of selected
tabu search applications and their outcomes. These vignettes identify a diverse
range of settings where tabu search has made useful contributions, and suggest
the form of additional applications where similar successes may be anticipated.

Each of these sections is self-contained and independent of the others. Our
intent is not to present the detailed workings of tabu search, but to disclose
fundamental perspectives and principles, especially those that are often over-
looked. To reinforce this theme, we include an Appendix that provides a catalog
of some of the most commonly neglected features of tabu search, emphasizing
those that can significantly improve the quality of results obtained.

2 TABU SEARCH AND ADAPTIVE
MEMORY PROGRAMMING

Tabu search has become the focus of numerous comparative studies and practi-
cal applications in recent years. Fruitful discoveries about preferred strategies
for solving difficult optimization problems have surfaced as a result.

However, sometimes the nature and implications of these discoveries have not
been made entirely clear. The reason for this ambiguity is that tabu search
has been presented with two faces in the literature, causing it to be viewed
as two different methods — one simpler and one more advanced. The simpler
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method incorporates a restricted portion of the TS design, and is sometimes
used in preliminary analyses to test the performance of a limited subset of its
components — usually involving only short term memory. The more advanced
method embodies a broader framework that includes longer term memory, with
associated intensification and diversification strategies. This second approach,
due to its focus on exploiting a collection of strategic memory components, is
sometimes referred to as Adaptive Memory Programming (AMP).

In fact, in both of its forms (though more strongly on the second) the thrust
that gives tabu search its distinctive character is the systematic use of adaptive
memory — in contrast to the design of “memoryless” approaches like simulated
annealing and genetic algorithms, or “rigid memory” approaches like branch
and bound and its various Al cousins such as A* search.

More encompassing forms of tabu search that qualify for the AMP label often
prove considerably more effective than the primitive forms. In many situations,
attempts to rely predominantly on restricted short term memory is an evident
handicap — one that invites comparison to attempts to solve a problem by
disengaging a part of the brain. Nevertheless, simplified TS approaches are
sometimes surprisingly successful. Since they are also frequently quite easy
to implement, these approaches will undoubtedly continue to appear in the
literature. However, it 1s important to be aware that they can be strongly
dominated by more complete TS methods. Relevant considerations underlying
these differences are sketched in the Appendix.

The remainder of this section will focus on certain issues that underly the
orientation of TS/AMP approaches, and on questions that are raised by these
issues. (Those who are less interested in “precepts and perspectives” can skip
to later sections.)

2.1 Is Memory Really a Good Idea?

Memory would seem unquestionably to be an integral component of any search
that deserves to be called “intelligent.” Yet, surprisingly, some of the methods
widely hailed as innovations in artificial intelligence — as applied to optimiza-
tion — are largely devoid of memory. The avoidance of memory, or more
particularly adaptive memory, is not as unreasonable as might be imagined.
Adaptive memory characteristically introduces too many degrees of freedom
to be treated in “theorem and proof” developments. Researchers who prefer
to restrict consideration to processes (and behavior) that can be characterized



4 CHAPTER 1

by rigorous proofs, which are the lifeblood of academic publishing, must focus
their efforts in other directions.

Yet there are more subtle and valid reasons to be wary about the use of memory.
Malleable forms of memory entail certain dangers — potential pitfalls that go
hand in hand with the ability to provide valuable strategic opportunities. These
dangers are the price to be paid for the evolution of “intelligent” mechanisms,
including biological mechanisms embodied in a brain.!

From an evolutionary standpoint, the emergence of memory may be viewed
as posing a challenge comparable to the emergence of oxygen, whose corrosive
properties (as evolutionary biologists are fond of telling us) caused considerable
destruction until organisms adapted to take advantage of them. Analogous
perils may well have been created by the emergence of memory, though today
we only see the outcomes that survived and flourished. Characteristically, the
blind alleys of poorly designed physical structure are conspicuously imprinted
on the fossil record. But the blind alleys of poorly regulated mental adjustment
— which may have affected survival in far subtler ways — remain invisible to

US.2

It is noteworthy, however, that we are memory users whose evolutionary line has
survived. Since we tend to endow our problem solving schemes with features
that reflect our own disposition, such schemes tend to be protected (at least to a
degree) from dangers otherwise presented by adaptive memory. Even so, hastily
contrived uses of memory can lead to conspicuously undesirable outcomes.

Accordingly, in order to solve complex problems more effectively, TS/AMP
approaches seek to uncover the potential gains of adaptive memory without
being caught in the traps of ill-considered memory designs. This leads to a
quest for “integrating principles,” by which alternative forms of memory are
appropriately combined with effective strategies for exploiting them. A novel
finding is that such principles are sometimes sufficiently potent to yield effective
problem solving behavior with negligible reliance on memory. Over a wide

1This perspective invites a reconsideration of popular themes: e.g., if an increase in mental
capacities creates such attendant risks, the act of acquiring a “knowledge of good and evil,”
as in the Garden of Eden story, is an understandable basis for expulsion from a simpler (and
safer) existence.

20r perhaps they are more visible than we suspect. Just as we maintain vestiges of
physical structure now left behind — a spine still not perfectly adapted to upright walking
and joints still not perfectly articulated for intricate grasping — we no doubt maintain vestiges
of mental patterns now obsolete, ineffective neural organizations that confine the range of
our perceptions and reactions.
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range of problem settings, however, strategic use of memory can make dramatic
differences in the ability to solve problems.

2.2 Points of Departure.

A starting premise of tabu search is that intelligent inhibition plays a critical
role in making effective use of memory. This may be conceived as a reflection
of an analogous supposition that appropriate forms of inhibition and restraint
correspondingly are essential to survival, although we may not always think of
such elements as survival tools. (The usual tenet of our culture is that inhibition
represents something which must be overcome, rather than something which
can provide important advantages when properly utilized.)

The connotation of the “tabu” term in tabu search carries an implication, as
it does in other domains, of rules that are contextual and subject to change.
This type of variability can range from narrowly confined interaction to highly
complex coordination. The potential intricacy of managing such variation un-
derstandably may pose an obstacle to rules that are too rigidly constrained by
the quest for mathematical precision, but there is a reverse danger of seeking to
handle complexity by the expedient of simplistic rules, particularly those that
rely heavily on randomization as a substitute for identifying strategic relation-
ships.

Currently it is fashionable to base the design of search mechanisms on a level
of organization represented by primitive organisms. But we may legitimately
wonder whether intelligent behavior can be adequately encompassed within
physical or biological processes that are distant precursors of the forms of orga-
nization embodied in our own brains. If there is value in having the capabilities
we call human, then it seems questionable to aspire to mimic something less.

There is of course no reason to limit consideration to forms of intelligence that
match our own. Evolution presumably may have honed our skills to handle
problems that have typically presented themselves in our surroundings. Our
prowess may be less impressive for problems confronted in other settings, in-
cluding problems created as a result of our own technology. A leading goal of
TS/AMP research is to identify memory and strategy combinations that have
merit in a wide range of contexts, not restricted to those we have commonly
encountered by the accident of history. If this pursuit may yield insights into
different types of intelligence, that would be a welcome bonus. Conceivably, by
this perspective, the field of memory-based search methods may have something
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useful to contribute to the field of cognitive behavior. Up to now, the comple-
mentary realms of search and psychology have been largely isolated from each
other. As findings about the connections between adaptive memory processes
and improved problem solving become systematized, however, this situation
may change.

2.3 Elements of Adaptive Memory.

Adaptive memory involves an attribute-based focus, and depends intimately
on the elements of recency, frequency, influence and logic. This simple catalog
disguises a surprising range of alternatives — as becomes apparent when the
four basic elements are considered in combination, and differentiated for dif-
ferent attribute classes over varying regions and spans of time. The notion of
influence, for example, characteristically refers to changes in quality, structure,
feasibility and regionality. The logic classification likewise is not limited to a
single dimension, but invites distinctions between “sequential logic” and “event
driven logic,” whose alternative forms appropriately give rise to different kinds
of memory structures.

A number of key questions arise about the nature and interrelation of these
elements, which have important implications for designing search methods. A
brief listing of some of these questions follows.

1. Which types of solution attributes can be most effectively exploited by
adaptive memory? (What is the impact of different exploitation strategies
on selecting neighborhoods for conducting the search?)

2. What types of functions are useful for generating new attributes as com-
binations of others? (What implications do such functions have for vocab-
ulary building methods in tabu search? (See Section 2.))

3. What are relevant measures of influence, as reflected in attribute changes
caused by moving from one solution to another? (How can these measures
assist in isolating characteristics of past trajectories that are relevant for
designing current ones?)

4. What thresholds should be established to identify levels of recency, fre-
quency and influence? (What role should these levels play in determining
tabu restrictions and aspiration criteria? How can thresholds be used to
provide penalties and inducements for selecting particular moves, and for
changing the phase of search?)
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5. How should probabilities be designed to take advantage of information pro-
vided by evaluative measures and thresholds? (Which search functions and
domains should be governed by probabilistic variation and which should
preferably be treated deterministically?)

6. How may memory be applied most effectively to coordinate the use of
compound neighborhoods? (What forms of memory are most useful for
ejection chain strategies, as a basis for concatenating component moves
into more elaborate alternatives?)

7. What clustering and pattern classification approaches are best suited to
take advantage of the search history? (How can these approaches be co-
ordinated to improve intensification and diversification strategies in tabu
search?)

8. Which special adaptations of memory and learning give best results for
highly context-specific problems? (Conversely, which “generic” forms are
most effective over wide ranges of problems whose structure is not predi-
cated in advance?)

Basic considerations and research directions associated with these questions are
examined in the following sections, and in the discussion of commonly neglected
aspects of tabu search in the Appendix.

3 MODELS OF NATURE — BEYOND
“GENETIC” METAPHORS

One of the most misunderstood aspects of tabu search is the connection between
a subset of its strategies and certain approaches embodied in genetic algorithms
(GAs). TS researchers have tended sometimes to overlook the part of the
adaptive memory focus that is associated with strategies for combining sets of
elite solutions. Complementing this, GA researchers have been largely unaware
that such a collection of strategies outside their domain exists. This has quite
possibly been due to the influence of the “genetic metaphor,” which on the one
hand has helped to launch a number of useful problem solving ideas, and on
the other hand has also sometimes obscured fertile connections to ideas that
come from different foundations.

To understand the relevant ties, it 1s useful to go back in time to examine the
origins of the GA framework and of an associated set of notions that became
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embodied in TS strategies. We will first sketch the original genetic algorithm
design, as characterized in Holland (1975). Our description is purposely some-
what loose, to be able to include approaches more general than the specific
proposals that accompanied the introduction of GAs. Many variations and
changes have come about over the years, as we subsequently observe.

Genetic Algorithm Template

1. Begin with a population of binary vectors.

2. Operate repeatedly on the current generation of vectors, for a selected
number of steps, choosing two “parent vectors” at random. Then mate
the parents by exchanging certain of their components to produce off-
spring. (The exchange, called “crossover,” was originally designed to re-
flect the process by which chromosomes exchange components in genetic
mating and, in common with the step of selecting parents themselves, was
organized to rely heavily on randomization. In addition, a “mutation”
operation is occasionally allowed to flip bits at random.)

3. Apply a measure of fitness to decide which offspring survive to become
parents for the next generation. When the selected number of matings has
been performed for the current generation, return to the start of Step 2 to
initiate the mating of the resulting new set of parents.

4. Carry out the mating-and-survival operation of Steps 2 and 3 until the pop-
ulation becomes stable or until a chosen number of iterations has elapsed.

A somewhat different model for combining elements of a population comes
from a class of relaxation strategies in mathematical optimization known as
surrogate constraint methods. The goal of these approaches is to generate
new constraints that capture information not contained in the original problem
constraints taken independently, but which is implied by their union. While
this may seem somewhat removed from the concerns that motivated the devel-
opment of genetic algorithms, we will see that some unexpected connections
emerge.

The information-capturing focus of the surrogate constraint framework has the
aim of developing improved methods for solving difficult optimization problems
by means of (a) providing better criteria for choice rules to guide a search for
improved solutions, (b) inferring new bounds (constraints with special struc-
tures) to limit the space of solutions examined. (For background, see Glover
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(1965, 1968, 1975), Greenberg and Pierskalla (1970, 1973), Karwan and Rardin
(1976, 1979), and Freville and Plateau (1986, 1993).) Based on these objectives,

the generation of new constraints proceeds as follows.

Surrogate Constraint Template

1. Begin with an initial set of problem constraints (chosen to characterize all
or a special part of the feasible region for the problem considered).

2. Create a measure of the relative influence of the constraints as basis for
combining subsets to generate new constraints. The new (surrogate) con-
straints, are created from nonnegative linear combinations of other con-
straints, together with cutting planes inferred from such combinations.
(The goal is to determine surrogate constraints that are most effective for
guiding the solution process.)

3. Change the way the constraints are combined, based on the problem con-
straints that are not satisfied by trial solutions generated relative to the
surrogate constraints, accounting for the degree to which different source
constraints are violated. Then process the resulting new surrogate con-
straints to introduce additional inferred constraints obtained from bounds
and cutting planes. (Weaker surrogate constraints and source constraints
that are determined to be redundant are discarded.)

4. Progressively update and modify the surrogate constraints to take advan-
tage of different current stages of the solution method and different regions
of the solution space. Repeat the process as long as the solution method
for the original problem continues to iterate.

A natural first impression is that the surrogate constraint design is quite unre-
lated to the GA design, stemming from the fact that the concept of combining
constraints seems inherently different from the concept of combining vectors.
However, this difference is not as great as it may initially appear. In many types
of problem formulations, including those where surrogate constraints were first
introduced, constraints are summarized by vectors. More particularly, over
time, as the surrogate constraint approach became embedded in both exact
and heuristic methods, variations led to the creation of a “primal counterpart”
called scatter search. The scatter search approach combines solution vectors by
rules patterned after those that govern the generation of new constraints, and
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specifically inherits the strategy of exploiting linear combinations and inference

(Glover (1977)).3

Accordingly, following the principles that underlie the surrogate constraint de-
sign, the scatter search process is organized to (1) capture information not
contained separately in the original vectors, (2) take advantage of auxiliary
heuristic solution methods (to evaluate the combinations produced and to ac-
tively generate new vectors), (3) make dedicated use of strategy instead of
randomization to carry out component steps.

We sketch the scatter search approach in its original form and identify some
novel connections and contrasts to GA methods. Then we examine extensions
that additionally take advantage of the memory-based designs of tabu search.

Scatter Search Procedure.

1. Apply heuristic processes to generate a starting set of solution vectors (trial
points). Designate a subset of the best vectors to be reference points. (Sub-
sequent iterations of this step, transferring from Step 3 below, incorporate
advanced starting solutions and best solutions from previous history as
candidates for the reference points.)

2. Form linear combinations of subsets of the current reference points to
create new points. The linear combinations are:

(a) chosen to produce points both inside and outside the convex region
spanned by the reference points.

(b) modified by generalized rounding processes to yield integer values for
integer-constrained vector components.

3. Extract a collection of the best points generated in Step 2 to be used as
starting points for a new application of the heuristic processes of Step 1.
Repeat these steps until reaching a specified iteration limit.

Two particular features of the scatter search proposal, which will be elaborated
later, deserve mention. The use of clustering strategies is suggested for selecting
subsets of points in Step 2, which allows different blends of intensification and

3The motivation for this development goes beyond the goal of producing a primal analog
for the surrogate constraint approach. In situations where surrogate constraint relaxations
yield a duality gap, the natural response is to combine elite solutions that “rim” this gap as
a basis for exploiting information that may be contained in their union.
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diversification by generating new points “within clusters” and “across clusters.”
Also, solutions selected in Step 3 as starting points for re-applying heuristic
processes are not required to be feasible, since heuristics proposed to accompany
scatter search include those capable of starting from an infeasible solution.

In sum, scatter search is founded on the following premises.

(P1) Useful information about the form (or location) of optimal solutions is
4

typically contained in a (sufficiently diverse) collection of elite solutions®.
(P2) When solutions are “combined” as a strategy for exploiting such infor-
mation, it is important to provide for combinations that can extrapolate
beyond the regions spanned by the solutions considered, and further to in-
corporate heuristic processes to map combined solutions into new points.

(P3) Taking account of multiple solutions simultaneously, as a foundation for
creating combinations, enhances the opportunity to exploit information
contained in the union of elite solutions.

The fact that the heuristic processes of scatter search (as referred to in (P2))
are not restricted to a single uniform design, but represent a varied collection
of procedures, affords strategic possibilities® whose implications are examined
in the Appendix.

The table on the following page traces the links between the conceptions un-
derlying scatter search and conceptions that have been introduced over time as
amendments to the GA framework.

These innovations in the GA domain, which have subsequently been incor-
porated in a wide range of studies, are variously considered to be advances
or heresies according to whether they are viewed from liberal or traditional

4Useful information may also be contained in bad solutions. However, such solutions
are usually much more numerous and varied than good ones, and consequently there is less
advantage in trying to make use of them. On the other hand, valuable information can be
contained in trajectories from bad solutions to good solutions (or from good solutions to
other good solutions), and such trajectory-based information is one of the elements that tabu
search seeks to exploit.

5This theme also shares a link with the original surrogate constraint proposal, where
heuristics for surrogate relaxations are introduced to improve the application of exact so-
lution methods. In combination, the heuristics are used to generate strengthened surro-
gate constraints and, iteratively applied, to generate trial solutions for integer programming
problems.
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Scatter Search Features (1977) Incorporated into
Non-Traditional GA Approaches

Introduction of “flexible crossover operations.” (Scatter search com-
binations include all possibilities generated by the early GA crossover
operations, and also include all possibilities embedded in the more ad-
vanced “uniform” and “Bernoulli” crossovers (Ackley (1987), Spears
and DeJong (1991)). Path relinking descendants of scatter search pro-
vide further possibilities, noted subsequently.)

Use of heuristic methods to improve solutions generated from processes
for combining vectors (Muhlenbein et al. (1988), Ulder et al. (1991)),
(Whitley, Gordon and Mathias (1994)).

Exploitation of vector representations that are not restricted to binary
representations (Davis (1989), Eschelman and Schaffer (1992)).

Introduction of special cases of linear combinations for operating on
continuous vectors (Davis (1989), Wright (1990), Back et al. (1991),
Michalewicz and Janikow (1991)).

Use of combinations of more than two parents simultaneously to pro-

duce offspring (Eiben et al. (1994), Mithlenbein and Voight (1996)).

Introduction of strategies that subdivide the population into different
groupings (Miihlenbein and Schlierkamp-Voosen (1994)).
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perspectives. Significantly, their origins are somewhat diffuse, rather than in-
tegrated within a single framework®. It is clear that a number of the elements
of the scatter search approach remain outside of the changes brought about
by these proposals. A simple example is the approach of introducing adaptive
rounding processes for mapping fractional components into integers. There also
has conspicuously been no GA counterpart to the use of clustering to create
strategic groupings of points, nor (as a result) to the notion of combining points
according to distinctions between membership in different clusters. (The clos-
est approximation to this has been the use of “island populations” that evolve
separately, but without concern for analyzing or subdividing populations based
on inference and clustering. The relevance of such matters, and of related
conditional analyses, also is discussed in the Appendix.)

The most important distinction, however, is the link between scatter search
and the theme of exploiting history. The prescriptions for combining solutions
within scatter search are part of a larger design for taking advantage of infor-
mation about characteristics of previously generated solutions to guide current
search. In retrospect, it is perhaps not surprising that such a design should
share an intimate association with the surrogate constraint framework, with
its emphasis on extracting and coordinating information across different so-
lution phases. This orientation, which takes account of elements such as the
recency, frequency and quality of particular value assignments, has become
the foundation of notions incorporated within tabu search. (The same refer-
ence on surrogate constraint strategies that is the starting point for scatter
search is also often cited as a source of early TS conceptions.) By this means,
the link between tabu search and so-called “evolutionary” approaches becomes
apparent7.

6The “press” for the GA approach suggests by contrast that it is not subject to such
variation, but represents a manifestation of immutable natural law. An amusing quote from
the January 16, 1996 issue of the Wall Street Journal is illustrative: “Three billion years
of evolution can’t be wrong,” [according to a genetic algorithm pioneer].... “It’s the most
powerful algorithm there is.”

"The term evolutionary has undergone an interesting evolution of its own. By a novel
turn, the term “mutation” in the GA terminology has become reinterpreted to refer to any
form of change, including the purposeful change produced by a heuristic process. As a result,
all methods that apply heuristics to multiple solutions, whether or not they incorporate
strategies for combining solutions, are now considered kindred to genetic algorithms, and
the enlarged collection is labeled “evolutionary methods.” This terminology accordingly has
acquired the distinction of embracing nearly every kind of method conceivable.
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Scatter Search Extensions

Tabu search memory 1s used to select current reference points from a

historical pool (Glover (1989, 1994a)).

Tabu search intensification and diversification strategies guide the gen-
eration of new points (Mulvey (1995), Zenios (1996), Fleurent et al.
(1996)).

Solutions generated as “vector combinations” are further improved by
explicit tabu search guidance (Trafalis and Al-Harkan (1995), Kelly,
Laguna and Glover (1996), Fleurent et al. (1996)).

Directional rounding processes focus the search for feasible zero-one
solutions allowing them to be mapped into convex subregions of hyper-
planes produced by valid cutting plane inequalities (Glover (1995a)).

Neural network learning is applied to filter out promising and un-
promising points for further examination, and pattern analysis is used
to predict the location of promising new solutions (Kelly, Laguna and

Glover (1996)).

Mixed integer programming models generate sets of diversified points,
and yield refined procedures for mapping infeasible points into feasible
points (Kelly, Laguna and Glover (1996)).

Structured combinations of points take the role of linear combinations,
to expand the range of alternatives generated (Glover (1994a)).
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3.1 Modern Forms and Applications of
Scatter Search

Recent implementations of scatter search (cited below) have taken advantage
of the implicit learning capabilities provided by the tabu search framework,
leading to refined methods for determining reference points and for generating
new points. Current scatter search versions have also introduced more sophis-
ticated mechanisms to map fractional values into integer values. This work
has produced new theorems about searches over spaces of zero-one integer vari-
ables. Special models have also been developed to allow both heuristic and
exact methods to transform infeasible trial points into feasible points. Finally,
scatter search has been generalized to produce a broader of methods called
path relinking methods, which offer a wide range of mechanisms for creating
productive combinations of reference solutions. A brief summary of some of
these developments appears in the table on the following page.

Implementation of various components of these extensions have provided ad-
vances for solving general nonlinear mixed discrete optimization problems with
both linear and nonlinear constraints.

Path Relinking

From a spatial orientation, the process of generating linear combinations of
a set of reference points may be characterized as generating paths between
and beyond these points (where points on such paths also serve as sources for
generating additional paths). This leads to a broader conception of the meaning
of creating combinations of points: by natural extension, we may conceive such
combinations to arise by generating paths between and beyond selected points
in neighborhood space, rather than in Euclidean space (Glover (1989, 1994b)).

The character of such paths is easily specified by reference to attribute-based
memory, as used in tabu search. In particular, it is only necessary to select
moves in a neighborhood space that perform the following simple function:
upon starting from an initiating solution, the moves must progressively in-
troduce attributes contributed by a guiding solution (or reduce the distance
between attributes of the initiating and guiding solutions). The process invites
variation by interchanging the roles of the initiating and guiding solutions, in-
ducing each to move simultaneously toward the other as a way of generating
combinations. (When the goal for combining the solutions can be expressed
as an optimization model, algorithmic processes may appropriately be incorpo-
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rated to generate the moves, as in the case of vocabulary building approaches
subsequently described. Related approaches are also described in Aggarwal,

Orlin and Tai (1996) and Balas and Niehaus (1996).)

Multiparent path generation possibilities emerge by considering the combined
attributes provided by a set of guiding solutions, where these attributes are
weighted to determine which moves are given higher priority. The generation
of such paths in neighborhood space characteristically “relinks” previous points
in ways not achieved in the previous search history, hence giving the approach
its name of path relinking.

Neighborhoods for this process may differ from those used in other phases of
search. For example, they may be chosen to tunnel through infeasible regions
that may be avoided by other neighborhoods. Such possibilities arise because
feasible guiding points can be coordinated to assure that the process will re-
enter the feasible region, without danger of becoming “lost.”

The scope of strategies made available by path relinking is significantly affected
by the fact that the term neighborhood has a broader meaning in tabu search
than it typically receives in the popular literature on search methods. Of-
ten, the neighborhood terminology refers solely to methods that progressively
transform one solution into another. Such neighborhoods are called transition
neighborhoods in tabu search, and are considered as merely one component
of a collection of neighborhoods that also include constructive and destructive
neighborhoods®.

In addition, tabu search characteristically endows such a collection of neighbor-
hoods with the ability to operate in regions beyond those visited by standard
procedures for generating solutions. Strategic oscillation approaches in TS,
for example, include variations that build solutions beyond the point of “com-
plete construction,” and more generally introduce complementary constructive
and destructive processes that go beyond standard boundaries in both direc-
tions. By selecting neighborhoods that are relevant to a given problem setting,
drawing on this expanded interpretation of a neighborhood, path relinking au-
tomatically provides solution combination procedures that are appropriate for
specific contexts. This is in noteworthy contrast to the situation encountered
with genetic algorithms, where each new class of problems initiates a search for
“new crossovers,” in order to overcome the limitations of classical models. (The
possibility of creating combinations that exploit information from the problem

8 This distinction seems either “superficial” or “perverse,”

according to different perspec-
tives, yet disregarding it has led to a variety of misconceptionsin the literature, and to designs

for solution methods that are inappropriately limited.
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setting is also sometimes still overlooked in GA approaches, due to the lingering
preference for models that are “context free.”)

Vocabulary Building

Recent discoveries point to a feature of the path relinking model that deserves
special consideration, involving a connection to the tabu search strategy of vo-
cabulary building. The basic idea of this approach is to identify meaningful
fragments of solutions, rather than focusing solely on full vectors, as a basis
for generating combinations. A pool of such fragments is progressively en-
riched and assembled to create larger fragments, until ultimately producing
complete trial solutions. In some settings these fragments can be integrated
into full solutions by means of optimization models (Glover (1992), Glover and
Laguna (1993)). Procedures using this design have been developed with highly
successful outcomes by Rochat and Taillard (1995) and Kelly and Xu (1995).
Approaches that heuristically assemble fragments have also been successfully
implemented by Taillard et al. (1995) and Lopez, Carter and Gendreau (1996).

Vocabulary building effectively may be conceived as an instance of path re-
linking. There are two key objectives: (1) to identify a good collection of
reference points, in this case consisting of “partial solutions” (which include
the fragments), and (2) to identify paths in neighborhood space that will unite
components of these partial solutions, with suitable attendant modifications,
to produce complete solutions. (Again it is important to keep in mind that
neighborhood spaces include constructive and destructive spaces, as well as
transition spaces. Attributes of different partial solutions may be imperfectly
compatible, and hence the synthesis of such partial solutions can benefit from
multiple or “compound” transformations to create effective linkages.) As a
special instance, of course, solution fragments may be united by linear combi-
nations, as in scatter search.

The crucial element of adaptive memory that permeates these alternative modes
of combination, and binds them to other tabu search strategies, affords chal-
lenging opportunities for research into the nature and meaning of “intelligent
combinations.” To the extent that the evolutionary label is coming to be ap-
plied to increasingly broad domains, researchers who have previously adopted
a GA perspective may find a shared interest in exploring the connections that
emerge from complementary elements of the TS framework.
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4 TS/AMP VIGNETTES

This final section provides a collection of “vignettes” that briefly summarize
applications of tabu search in a variety of settings. These vignettes are edited
versions of reports by researchers and practitioners who are responsible for the

applications?.

4.1 Protein Conformation Lattice Model

Using Tabu Search

The determination of the three-dimensional structure of a protein from a given
sequence of amino acids is one of the most challenging unsolved problems in
the science of molecular biology. There have been many computer models
designed to solve the protein folding problem. All computer models, though
employing different types of energy minimization, can be expressed as the global
optimization of a non-convex potential energy function. The basic difficult in
solving these models 1s the existence of multiple local minimizers. Recently,
there have been various approaches used to solve these models arising from
protein folding.

Lattice models have been used by many researchers to describe the protein fold-
ing mechanism. This is motivated from two aspects of research interests. On
one side, scientists (with practical insight) are hoping to use some lattice struc-
tures to obtain initial solutions of protein conformations, with the assumption
that an optimal or near-optimal native state can be obtained by relaxing the
monomers around the lattice structure. On the other side, acknowledging that
we do not understand the mechanism of protein folding, scientists are seeking
to understand protein conformations by using lattice models.

Pardalos, Liu and Xue (1995) design an algorithm for a class of lattice models
using tabu search and test their approach with a chain of 27 monomers. The
algorithm was developed in C and tested using the same data for a fundamental
test set published by the American Mathematical Society. Among the protein
sequences tested, only a few sequences fail to match the best results previously

9 A debt of gratitude is owed to the individuals whose contributions have made this sum-
mary possible. (Deficiencies in describing their work are solely due to the current editing,
and should not be interpreted to reflect shortcomings of the original reports. In a number
of cases, the work cited presents only a small sampling of significant contributions by the
authors referenced.)
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reported. In all other cases (from a set of 200 examined) the tabu search
method obtains results as good or better than the previous best.

4.2 Optimization of B-ISDN
Telecommunication Networks

Costamagna, Fanni and Giacinto (1995) develop a Tabu Search algorithm for
topological optimization of broad band communication networks whose struc-
ture is based on a single exchange and on a number of multiplexing centers.

The topology of the network is represented by an undirected graph G(N,A).
The set of nodes N represents locations of both existing or possible multiplexers,
and location of users. The set of arcs A represents the possible communication
links that may be used to connect the users, the multiplexers and the exchanges
among them (constituting a cable conduit graph). This graph contains all the
information about the area in which the network must be built.

The design problem consists of choosing a spanning tree T of G that connects
all the users to the multiplexers through the distribution network, and the mul-
tiplexers to the exchange through the transport network, allowing the overall
cost of the plant be minimized.

An empirical study was performed comparing TS with three other methods: a
Simulated Annealing (SA) method, a genetic algorithm (GA) and a heuristic
“Add & Drop” procedure, in terms of computational time and cost. The TS
approach reached better configurations in a time equal to or lower than that
required by other algorithms. The work has been supported by Marconi, Gen-
ova, Italy. Thesis awards have been also granted by S.I.P. S.p.A. (now Telecom
Ttalia), and the Ttalian public telephone company, which also provided cost data
and evaluation of results.

4.3 Tabu Search for Location Analysis: The
P-Median Problem

Many location analysis problems are prime targets for tabu search techniques.
One such binary decision problem, the p-median problem, can be stated as
follows: given a graph G = (V,E), the goal to find a set of nodes, S, of size p,
such that the weighted sum of the distances from the remaining nodes (those
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of V-S) to the set S is minimized. Rolland, Schilling and Current (1995) pro-
vide a tabu search algorithm that utilizes single node transfers with a simple
short-term memory structure, and a strategic oscillation scheme that allows
the procedure to search through an infeasible solution space. Long-term mem-
ory structures are used to penalize moves that occur inordinately often. The
resulting tabu search procedure outperformed all known heuristics both with
respect to solution quality and computational effort.

4.4 Scheduling in Manufacturing Systems

Effective scheduling in manufacturing systems leads to the reduction of manu-
facturing costs (inventory costs, labor costs, etc.) and improves the operational
efficiency of management. The most frequently used and extensively studied
problems in the literature are (A) the job shop problem and (B) the flow shop
problem. In addition, a basic model for a broad family of cases called flexible
flow line scheduling problems is given by the problem known as (C) the flow
shop problem with parallel machines. Industrial applications arise in computer
systems, telecommunication networks, and the chemical and polymer indus-
tries.

Nowicki and Smutnicki (1993, 1994, 1995) have developed effective tabu search
methods for problems A, B, and C to optimize the makespan criterion. These
algorithms employ a classical insertion neighborhood which is significantly re-
duced by a candidate list strategy for removing useless moves, in order to
concentrate on “the most promising part” of the neighborhood.

The proposed algorithms employ a short-term memory tabu list which stores
attributes of visited solutions, represented by selected pairs of adjacent jobs on
a machine. Linked intensification and diversification occurs by storing the best
solutions collected during the search on a list of limited length. An extended
sequence of unproductive steps triggers a ’back jump’ on the search trajectory
to the nearest elite solution, which is recovered together with its associated
search history as a basis for re-initiating the search.

Implementations made on a PC are able to improve significantly the best known
solution found by other algorithms. Computation times are only a few minutes
for instances of A&B problems containing 10,000 operations, and for instances
of C problems containing 3,000 operations. An extensive comparative study
shows the significant superiority of TS over other approaches including iter-
ative improvement, genetic search, simulated annealing, threshold accepting,
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constraint satisfaction, neural networks, and other local search methods (see
Vaessens, Aarts and Lenstra (1995)).

4.5 Tabu Search for Designing Optical
Telecommunication Networks

The increased complexity and globalization of today’s world has been accompa-
nied by the emergence of optical networks as flexible, fast, efficient, and reliable
media for transferring information. In this domain, congestion minimization
presents one of the main challenges of telecommunication network design. The
problem often includes the goals of devising efficient routing and management
techniques in case of network failures. An improved approach for minimizing
congestion in optical networks, based on tabu search, has been developed by
Skorin-Kapov and Labourdette (1995).

Further motivation for this work arises because changing traffic conditions cre-
ate a need for fast algorithms to re-arrange logical connections. Algorithms
that quickly obtain very high quality solutions are mandatory in order to opti-
mize the use of network with respect to a given criterion. The goal is to find the
logical connection diagram and routing of flow which minimizes the maximum
congestion on a link. (This goal also effectively increases the relative capacity
of the network.)

The tabu search approach for this problem has generated improved solutions
for data sets established to provide comparative benchmarks. The approach
not only improves on previous results, but has been calibrated by Skorin-Kapov
and Labourdette to identify performance characteristics for different parame-
ter values, and on different patterns of input data. The outcomes also yield
guidelines for solving larger problems.

4.6 Automated Guided Vehicle Systems
Flowpath Design Applications

Automated Guided Vehicle Systems (AGVSs) have been of great interest to
industry for the last two decades. The number of applications of these systems
has increased to a point where AGVSs are considered to be a basic concept
in material handling. Although initial applications of AGVSs were generally
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limited to warehouses, in recent years an increasing number of applications in
manufacturing systems have been reported.

Chiang and Kouvelis (1994a) address the flowpath design issue of AGVSs. The
authors concentrate on the design of unidirectional flowpaths (where vehicles
are restricted to travel only on one direction along a given segment of the
flowpath), and develop different versions of simulated annealing and tabu search
algorithms for the design of unidirectional AGVSs. Extensive computational
results indicate that a tabu search implementation with the use of a frequency
based memory structure dominates all tested heuristics in terms of solution
quality, with an impressive average performance over 45 test problems of less
than 0.85% deviation from optimality.

4.7 Graph Theory: Uniform Graph
Partitioning

The uniform graph partitioning problem may be described as follows. Given
a graph G = (V,E), where |V| = m = 2n, we seek a partition of V into two
node sets V1 and V2 such that V.= V1 4+ V2 and |V1| = |[V2| = n. The goal
is to identify such a partition that minimizes the sum of the cost of edges (i,j)
where i € V1 and j € V2. Rolland, Pirkul and Glover (1995) have developed
a tabu search algorithm for this problem that outperformed all other heuris-
tics tested (including the reported best versions of simulated annealing and the
Kernighan-Lin approach), both with respect to solution quality and computa-
tional requirements. A key element of the tabu search was a strategic oscillation
that drove the search through infeasible solution configurations, causing the car-
dinality of the node sets to grow and shrink in coordinated waves. (Additional
recent important tabu search developments for this problem are provided by

Dell’Amico and Maffioli (1996).)

4.8 Tabu Search for Audit Scheduling

Scheduling problems often become increasingly difficult as they acquire greater
realism. Audit scheduling adds complexities to traditional scheduling. Char-
acteristically, in such problems the processing units (the auditors):

1. have unequal processing times
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2. are not all fit (educated) for all jobs

3. are not always available (yet must work at least a minimum amount, and
at most a maximum amount of time)

4. are movable (at a cost), and can transfer between various projects: hence
introducing sequence dependent setup costs and times

Dodin, Elimam, and Rolland (1995) develop a tabu search procedure that uti-
lizes traditional dispatching rules (such as forward loading) with the short-
and long-term memory structures of tabu search. The tabu search intensifies
the search using short-term memory, and diversifies the search using controlled
dispatching, long-term memory and candidate lists. Computational tests show
the tabu search has approach produces schedules superior to those obtained by
heuristics traditionally applied to these problems.

4.9 Mapping Tasks to Processors to Minimize
Communication Time in a Multiprocessor
System

Connectionist machines are attracting widespread attention for their value as
an embodiment of massively parallel computer architecture. This is particularly
true for solving combinatorial optimization problems arising in a variety of engi-
neering applications. At the same time, the goal of designing and implementing
a connectionist machine as effectively as possible introduces challenging opti-
mization problems.

An important problem is to minimize the communication time required by a
connectionist machine. Communication time often is a substantial determinant
of overall cost and efficiency. In a significant class of applications, such as finite
element analysis, the communication pattern is static. The memory locations
defining the source and destinations of messages do not change in these applica-
tions, but only the communicated data varies. Improved designs for allocating
processors to chips according to the structure of their communication pattern
offer considerable potential for savings in cost and time.

Chakrapani and Skorin-Kapov (1995) have developed an effective tabu search
method for the problem of mapping tasks to processors to minimize commu-
nication time in a multiprocessor system. The method incorporates a parallel
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processing implementation which includes tabu search memory and guidance
mechanisms for iteratively selecting pairs of tasks and swapping their processor
assignments. The implementation employs two levels of parallelism. First, the
candidate tasks to be swapped are identified in parallel. Second, more than
one pair of tasks are swapped in a single iteration. This strategy is designed
to operate with efficient approximations that allow inaccurate (incomplete) in-
formation for evaluating moves. The authors propose a diversification strategy
which makes the search robust under these circumstances. Due to its robust
parallel implementation, the algorithm can be used to develop heuristics for
“quasi-dynamic” communication patterns, in which the task graph changes
slowly with time.

4.10 Multiprocessor Task Scheduling in
Parallel Programs

When parallel application programs are executed on MIMD machines, the par-
allel portion of the application can be speeded up according to the number of
processors allocated to it. In a homogeneous architecture, where all processors
are identical, the sequential portion of the application will have to be executed
in one of the processors, considerably degrading the execution time. In a het-
erogenous structure, where a faster processor, responsible for executing the
serial portion of the parallel application and is tightly coupled to other smaller
processors, higher performance may be achieved. The procedure of assigning
tasks to processors (task scheduling) is more complex in the heterogeneous case,
where the processors have distinct processing speeds.

Porto and Ribeiro (1995a) have applied the tabu search metaheuristic to the
task scheduling problem in a heterogeneous multiprocessor environment under
precedence constraints. A series of different tabu search parameters and strate-
gies were studied side-by-side with a variety of task precedence graphs (topol-
ogy, number of tasks, serial fraction, service demand of each task) and system
configurations (number of processors, architecture heterogeneity measured by
the processor power ratio). The algorithm showed itself to be very robust
and effective, systematically improving by approximately 25% the makespan of
the solutions obtained by the best greedy algorithm used to provide an initial
solution.
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4.11 Probabilistic Diversification and
Intensification in Local Search for
Vehicle Routing

Rochat and Taillard (1995) develop a probabilistic TS technique to diversify,
intensify and parallelize almost any local search for almost any VRP. This tech-
nique makes the local search more robust since it converges more often solutions
whose quality is close to that of the best known solution. This technique has
several advantages: First, it i1s relatively easy to design a local search that lo-
cally finds good tours, but it is hard to design a search that finds good tours
for all customers simultaneously; the proposed technique makes it possible to
overcome this difficulty and to design a fairly robust method more easily. Sec-
ond, this technique may be applied to several types of VRPs, for example those
including the following constraints:

®m  Time windows for the customer deliveries.

m  Differentiated vehicles (cost of use per kilometer, volume capacity, carrying
capacity).

m  Constraints on the tours (maximum length, driver breaks, customers that
cannot be reached by any vehicle).

m  Backhauls.
m  Multiple depots.

Third, this technique may easily be parallelized with an arbitrary number of
processors (not depending on problem size).

The Rochat and Taillard approach exploits two primary perspectives, as follows.

The first comes from probabilistic tabu search, which is founded on the 1dea of
translating information generated by the search history, coupled with current
measures of attractiveness, into evaluations that are monotonically mapped
into probabilities of selection. Operating in a neighborhood framework, the
approach then successively selects among available alternatives according to
a probability assignment that is strongly biased to favor the choice of higher
evaluations.

The second main perspective that underlies the R&T approach derives from one
of the most basic types of intensification strategies. The heart of this approach



26 CHAPTER 1

lies in generating solutions by reference to the notions of strongly determined
and consistent variables.

It is shown that efficient first level tabu searches for vehicle routing problems
may be significantly improved with this technique. Moreover, the solutions
produced by this technique may often be improved by a post-optimization
technique presented in this paper too, which embodies an effective means for
applying a vocabulary building strategy in this context. The solutions of nearly
40 problem instances of the literature have been improved. This technique may
also be applied to other local searches or other VRPs.

4.12 Optimization of Electromagnetic
Structures With Tabu Search

Fanni, Giacinto and Marchesi (1996) develop a Tabu Search strategy to op-
timize the design of a magnet for Magnetic Resonance Imaging (MRI). This
is an important biomedical device whose optimal design is sought by many
companies, such as general Electric, Siemens and Oxford Instruments. Among
different magnetic structures, MRI magnet systems are a tough benchmark for
optimization procedures.

The goal of the problem considered was to design coils to yield a ‘homogeneous’
magnetic field in a fixed region, according to an appropriate function. For each
coil the position and thickness have to be determined. To apply a TS based
method, Fanni, Giacinto and Marchesi discretize the range of variation of each
variable dividing it in sub-ranges, yielding a finite alphabet. The neighborhood
of a solution consists of all the configurations obtained by considering all the
possible symbols for each variable, keeping the others constant. Short term
memory prevents repetitions of configurations of the coils (in terms of symbols
of the finite alphabet). In non improving phases, frequency based memory
also penalizes choices of moves that drive toward configurations often visited.
Finally, local minimization using golden search is applied after the choice of the
move. Computational tests show the TS approach performs more efficiently
than an SA and a GA approach, and requires less than half as much solution
time.
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4.13 Multiprocessor Task Scheduling Using
Parallel Tabu Search

Porto and Ribeiro (1995b) have designed and implemented parallelization tabu
search strategies for the multiprocessor task scheduling problem. Parallelization
relies exclusively on the decomposition of the solution space exploration. Four
different parallel strategies were proposed and implemented on a 32-processor
IBM SP1 parallel machine running PVM for varying problem sizes and num-
ber of processors: the master-slave model, with two different schemes for im-
proved load balancing, and the single-program-multiple-data model (SPMD),
with single-token and multiple-token message passing schemes. These two ba-
sic models mainly differ in the way information is exchanged between parallel
tasks at the end of each iteration of the tabu search. The computational results
confirmed the high adaptability of the TS algorithm to parallelization, show-
ing that communication is not a burden to achieving almost ideal efficiency
in the majority of the test problems. The task scheduling problem considered
in this study is characterized by very large neighborhood structures that are
costly to explore. However, the speedup achieved through simple paralleliza-
tion techniques made possible a less restricted neighborhood search, which not
only reduced computation time but produced better solutions for several test
problems.

4.14 Tabu Search Applied to the Quadratic
Assignment Problem (QAP), and
Implementations for Connection
Machines

The Quadratic Assignment Problem (QAP) is a classical NP-hard problem
arising in many applications involving, for example, facility layout or VLSI de-
sign. Skorin-Kapov (1990, 1994) solves the quadratic assignment problem sub-
optimally using the so-called Tabu-Navigation procedure, obtaining improved
outcomes over previous results. In the process of designing an efficient mas-
sively parallel algorithm for the QAP, Chakrapani and Skorin-Kapov (1992)
first generalized the connectionist model proposed by Aarts and Korst (1989)
for the Traveling Salesman Problem (TSP) to solve the QAP. This was the
first study replacing simulated annealing with (deterministic) tabu search in a
connectionist model. This was also the first study involving dynamically chang-
ing connection strengths for such problems. In a subsequent paper Chakrapani
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and Skorin-Kapov (1993a) developed a massively parallel tabu search algorithm
and implemented it on the Connection Machine. The careful implementation
on Connection Machine, a massively parallel computer architecture, proved to
be extremely suitable: provided enough processors, the computational time
grows with O(log n).

4.15 Facility Layout in Manufacturing

The design of the facility layout of a manufacturing system is critically impor-
tant for its effective utilization: 20 to 50 percent of the total operating expenses
in manufacturing are attributed to material handling and layout related costs.
Use of effective methods for facilities planning can reduce these costs often
by as much as 30 percent, and sometimes more. In general, the facility lay-
out problem has been formulated as a quadratic assignment problem (QAP).
The QAP is to find the optimal assignment of n candidate facilities (depart-
ments, machines, workstations) to n candidate sites, for the goal of minimizing
the total layout costs (which includes the material handling cost, expressed as
the product of workflow and travel distance, and a fixed cost associated with
locating a facility at a specific location).

Chiang and Kouvelis (1994b) provide a new implementation of the tabu search
metaheuristic to solve the QAP, with particular emphasis on facility layout
problems, utilizing recency-based and long term memory structures, dynamic
tabu size strategies, and intensification and diversification strategies. The tabu
search algorithm quickly converges from an arbitrarily generated random so-
lution. Computational experiments, including statistical analysis and library
analysis, strongly support the superiority of the C & K tabu search heuristic
compared to other procedures for this facility layout application.

4.16 Quadratic Semi-Assignment and Mass
Transit Applications

The quadratic semi-assignment problem (QSAP) is related to the quadratic
assignment problem by the requirement of assigning a set of n objects to any
of m locations. The QSAP differs by allowing each location to be assigned
none, one, or even more than one object, whereas the QAP requires a one-one
mapping of objects to locations (m = n).
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Voss (1992), Domschke et al. (1992) and Daduna and Voss (1995) develop
dynamic tabu search approaches for the QSAP, in a series of applications for
modeling and solving a schedule synchronization problem in a mass transit
system, where the goal is to minimize the total transfer waiting times of pas-
sengers. Both from an economic and a social standpoint, reducing passenger
wailting time is a major issue in the operation of mass transit systems.

The outcomes of the tabu search applications show that better schedules are
produced than those obtained by previous approaches, which were based on
simulated annealing. The Daduna and Voss study also reports the successful
incorporation of the tabu search schedule synchronization procedures into an
overall solution approach for changing a public mass transit system by intro-
ducing new bus lines. The resulting advances include the ability to perform
sensitivity analysis more effectively, disclosing that small changes, appropri-
ately determined, can create large improvements in both cost and quality of
service.

4.17 Reactive Tabu Search in Combinatorial
Optimization
Reactive Tabu Search (RTS) as developed by Battiti and Tecchioli (1992,

1994b), has been applied to a considerable range of optimization problems.
Combinatorial problems studied with this approach include:

m  Quadratic Assignment Problems

m  N-K Models (derived from biological inspiration),
m (-1 Knapsack and Multi-Knapsack Problems,

m  Max-Clique Problems

m  Biquadratic Assignment Problems

In many cases the results obtained with alternative competitive heuristics have
been duplicated with low computational complexity, and without intensive pa-
rameter and algorithm tuning. In some cases (e.g., in the Max-Clique and
Biquadratic assignment problems) significantly better results have been ob-
tained. A comparison of RTS with alternative heuristics (Repeated Local Min-
ima Search, Simulated Annealing, Genetic Algorithms and Mean Field Neural
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Networks) is presented in B&T (1995¢) and a comparison with Simulated An-
nealing on QAP tasks is contained in B&T (1994c¢), disclosing the effectiveness
of the RTS approach relative to these alternative procedures.

4.18 Asynchronous Parallel Tabu Search for
Integrated Circuit Design

The logical test of integrated circuits is one of the main phases of their de-
sign and fabrication. The pseudo-exhaustive approach for the logical test of
integrated circuits consists in partitioning the original circuit to be tested into
non-overlapping subcircuits with a small, bounded number of input gates, which
are then exhaustively tested in parallel. Andreatta and Ribeiro (1994) de-
veloped an approximate algorithm for the problem of partitioning integrated
combinational circuits, based on the tabu search metaheuristic. The circuits
are modelled as directed acyclic graphs. The proposed algorithm contains sev-
eral original features, including reduced neighborhoods; complex moves (similar
to an ejection chain strategy); a multicriteria cost function and the use of a
bin-packing heuristic as a post-optimization step. Computational results were
compared with those obtained by the best algorithm previously published in
the literature, with significant improvements. The average reduction rates have
been on the order of 30% for the number of subcircuits in the partition, and of
the order of 40% for the number of cuts required.

4.19 Asynchronous Multithread Tabu Search
Variants

The use of alternative types of move attributes for the formation of the tabu
lists, and multiple strategies for obtaining initial solutions, can very often en-
hance the quality of solutions obtained in TS approaches. As shown by Aiex,
Martins, Ribeiro and Rodriguez (1996) the combination of different initial so-
lution procedures with different types of move attributes may be usefully in-
tegrated in an asynchronous multithread procedure, in which each processor
runs a tabu search algorithm with a different pair of initial solution procedure
and move attributes.

Each time one of the search threads finds a new local optimum, it writes this so-
lution in a pool of elite solutions, which is kept by a master processor in charge
of search coordination. When a search thread is not able to improve its local
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best solution, it accesses the pool of solutions and randomly chooses one of them
to restart the search. Global stopping criteria are used. Aiex et al. implement
this asynchronous strategy for the circuit partitioning problem, using 10 pro-
cessors, where one of them is the master in charge of the search coordination,
and the other processors run nine different strategy combinations. The results
obtained by this multithread version of the tabu search algorithm yield much
better solutions than those obtained by the sequential tabu search algorithm,
within very reasonable computational times. This multithread search proce-
dure was implemented using two different parallel programming tools, PVM
and Linda, also leading to comparative results concerning these tools. (Reviews
of the parallel TS literature and evaluations of several parallel programming
tools have been recently published by Martins, Ribeiro and Rodriguez (1996)
and Toulouse, Crainic and Gendreau (1996). See also the Appendix for a dis-
cussion of strategies for exploiting multiple choice rules and neighborhoods.)

4.20 Tabu Search for Two Dimensional
Irregular Cutting

The two-dimensional cutting problem is an optimization problem in which two-
dimensional elements of arbitrary specified shapes are to be cut out of a rect-
angular material. The objective is to determine a cutting pattern that will
minimize the amount of material used. The importance of the problem is
growing due to its relation to packing, loading and partitioning, which have
applications in multiple branches of industry.

Blazewicz and Walkowiak (1995) apply three variants of tabu search to this
problem, extending earlier work of Blazewicz, Hawryluk and Walkowiak (1993).
The first approach is a simple short term memory version of tabu search that
incorporates a tabu list, an aspiration function and a single criterion for opti-
mization. The next variant introduces a new type of evaluating function which
combines several criteria to be optimized, together with an associated tabu con-
dition. In the last version a probabilistic approach is used which translates the
evaluation criteria into probabilities of selection. An exact algorithm for the
subproblem of finding the placement of the polygon is incorporated to enhance
the quality of solutions. The final version is also embedded in a parallel version
of the algorithm by taking into account various tabu method parallelization
schemes and geometric features of the algorithm and problem space.

Extensive computational comparisons disclose that all variants of the tabu
search method tested, but most particularly the advanced ones, obtain sig-
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nificantly improved patterns for cutting layouts. In addition, the parallel im-
plementation demonstrates the ability of the method to be exploited highly
effectively in a multiprocessor environment.

4.21 Solving the Vehicle Routing Problem
with Time Windows

In the face of today’s global competition, the need for more efficient logistical
planning has become a pressing issue for most manufacturing and distribution
concerns. Barnes and Carlton (1995) present a reactive tabu search (RTS)
approach to the vehicle routing problem with time windows (VRPTW). The
VRPTW considered has available, at a single depot, m identical vehicles with
a specified cargo capacity. Fach of n nonidentical customers require a specified
volume of cargo which must be delivered within a specified contiguous interval
of time. Each customer must be visited exactly once and the objective is to
find the feasible set of vehicle routes that minimize the total travel time.

The B & C study furnishes a brief review of the most recent literature associ-
ated with the VRPTW presents their RTS algorithm and gives computational
results for the algorithm when applied to a widely used benchmark test set
of vehicle routing problems with time windows due to Solomon. The results
were produced without any attempt at “tuning,” and were obtained in a small
fraction of the time required by current exact techniques. The proposed algo-
rithm does not suffer from the computational limitations of exact approaches,
which are unable to successfully attack larger problems. The algorithm expe-
rienced no difficulty in obtaining solutions to all 56 Solomon problems for the
100-customer sets.

4.22 The Damper Placement Problem on
Space Truss Structures

NASA has conducted a set of laboratory experiments investigating the control
of space structures. To facilitate these experiments, a large, flexible structure
was assembled from truss elements and antenna support members and dubbed
the Controls-structures-interactions Evolutionary Model (CEM). The CEM was
designed to simulate characteristics of a large earth-observation platform and
was dynamically tested in the NASA Langley Space Structures laboratory.
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The overall structural motion of a flexible truss structure can be reduced by
the use of structural dampers that both sense and dissipate vibrations. Kincaid
and Berger (1993) develop a tabu search method for the problem of locating
these dampers. The goal is to assure that vibrations arising from the control or
operation of the structure and its payloads, or by cyclic thermal expansion and
contraction of the space structure, can be damped as effectively as possible.

Given a strain energy matrix with rows indexed on the modes and the columns
indexed on the truss members, the problem can be expressed as that of find-
ing a set of p columns such that the smallest row sum, over the p columns,
1s maximized. The TS approach obtained high quality solutions, as verified
by comparisons with designs previously proposed and also with upper bounds
provided by the optimum value of an LP relaxation. Qutcomes from the study
led NASA engineers to reconsider their design assumptions, and in consequence
to change the rigidity of support arms for the truss structure.

4.23 Mixed Integer, Multi-stage Stochastic
Programming

A very large class of problems is characterized by a multi-stage decision pro-
cess where the future is uncertain and some decisions are constrained to take
on values of either zero or one (as in the decision of whether or not to open
a facility at a particular location). Although some mathematical theory exists
for such problems, no general purpose algorithms have been available to ad-
dress them. Lgkketangen and Woodruff (1996) introduce the notion of integer
convergence for progressive hedging, and provide the first implementation of
general purpose methods for finding good solutions to multi-stage, stochastic
mixed integer (0,1) programming problems. The solution method makes use
of Rockafellar and Wets’ progressive hedging algorithm that averages solutions
rather than data, and then applies a tabu search algorithm to obtain solutions
to the induced quadratic, (0,1) mixed-integer sub-problems. Computational
experiments verify the effectiveness of the new method across a range of prob-
lem instances. The software that the authors have developed reads standard

(SMPS) data files.
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4.24 Tabu Search for the Fixed Charge
Transportation Problem

In a fixed charge transportation problem, a fixed (“all or none”) cost is in-
curred whenever a route in the transportation network is used. Goods trans-
ported along that route are additionally subject to a unit variable cost. The
underlying model is also applicable to plant and warehouse location problems,
purchase/lease problems, and personnel hiring problems.

A tabu search approach was developed for this problem by Sun et al. (1995)
using recency based and frequency based memories, two strategies for each of
the intermediate and long term memory processes, and a network based imple-
mentation of the simplex method as the local search method. A computational
comparison was performed to evaluate the performance of this approach on ran-
domly generated problems of different sizes and of different ranges of magnitude
of fixed costs relative to variable costs. Objective function values and CPU time
were used as criteria to compare the performance of this procedure with that
previously proposed methods consisting of an exact solution algorithm and a
heuristic procedure.

The tabu search procedure obtained optimal and near-optimal solutions much
faster than the exact solution algorithm for simple problems, and thoroughly
dominated the exact algorithm for more complex problems. For example, in
a set of 15 randomly generated problems in the class studied, restricting the
problem size, the tabu search procedure found the optimal solutions for 12 prob-
lems, and the objective function value of the worst solution to the remaining
3 problems was less than 0.06% higher than that of the optimal solution. The
exact solution procedure used an average of 5888 CPU seconds for these prob-
lems, while the tabu search procedure used an average of just 1.63 seconds. As
problem size increased or as fixed costs became high relative to variable costs,
the solution time for the exact algorithm became inordinate. Compared to the
alternative heuristic approach, statistical results showed that the tabu search
procedure found comparable solutions at least as good for very small and easy
test problems, and found significantly better solutions for all other problems.
For the small problems, the solution times used by both heuristics were similar,
while for larger problems and for problems with higher fixed relative to variable
costs, the tabu search procedure was 3 to 4 times faster than the competing
heuristic.
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4.25 Sub-symbolic Machine Learning (Neural
Networks)

While derivative-based methods for training from examples have been used
with success in many contexts (error backpropagation is an example in the
field of neural networks), they are applicable only to differentiable performance
functions and are not always appropriate in the presence of local minima. In
addition, the calculation of derivatives is expensive and error-prone, especially
if special-purpose VLST hardware is used. Battiti and Tecchiolli (1995b) use a
significantly different approach: the task is transformed into a combinatorial
optimization problem (the points of the search space are binary strings), and
solved with a reactive tabu search algorithm. To speed up the neighborhood
evaluation phase a stochastic sampling of the neighborhood is adopted and a
“smart” iterative scheme is used to compute the changes in the performance
function caused by changing a single weight. The RTS approach escapes rapidly
from local minima, it is applicable to non-differentiable and even discontinuous
functions and 1t is very robust with respect to the choice of the initial config-
uration. In addition, by fine-tuning the number of bits for each parameter one
can decrease the size of the search space, increase the expected generalization
and realize cost-effective VLSI.

4.26 Vehicle Routing Problem With Time
Windows Applications

The vehicle routing problem with time windows (VRPTW) can be used to
model many real-world problems and has recently been the subject of intensive
research. Applications of the VRPTW include bank deliveries, postal deliveries,
industrial refuse collection, national franchise restaurant deliveries, school bus
routing, and security patrol services.

Chiang and Russell (1995) have developed a reactive tabu search metaheuris-
tic for the VRPTW that dynamically varies the size of the list of forbidden
moves (in order to avoid cycles as well as an overly constrained search path).
The method incorporates intensification and diversification strategies to achieve
higher quality solutions. C & R also developed simulated annealing meta-
heuristics which achieve solutions that compare favorably with previously re-
ported results. Computational tests of problems from the literature as well
as of large-scale real-world problems show that several new best known solu-
tions are achieved by both the tabu search and simulated annealing approaches.
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However, tabu search outperforms simulated annealing in solution quality. The
tabu search approach is especially effective in reducing fleet size requirements
for routing problems constrained by time windows.

4.27 The Polymer Straightening Problem

Polymer chemists at NASA-Langley Research Center are interested in the crys-
tallization of high-performance aromatic polyimides. The value of these poly-
mers lies in their thermal stability, strength, and toughness. Aromatic poly-
imides are used to build high-performance carbon fiber composites for struc-
tural components in aircraft and spacecraft, which depends on their crystal-
lization. A key problem is to determine a priori if there exists a conformation
for which a given aromatic polyimide crystallizes.

The role of the optimizer in this application is to determine if a straight line
conformation for a given polyimide exists among all possible combinations of
allowable (minimum energy) torsion angles for the rotable bonds. The total
number of combinations may be quite large, easily containing as many as 100
million possible conformations.

Kincaid, Martin and Hinkley (1995) develop a simple tabu search procedure to
find a conformation that maximizes the cosine of the angle between the first
bond and the projection of the last bond over all allowable conformations. The
method was applied to the analysis of three polyimides of interest to NASA
Langley Research Center, and succeeded in finding the optimal conformation
in all three cases. (Normally, a research chemist could require as much as
three years to perform such an analysis.) The ultimate goal of this research
is to provide a technique that will serve as an aid to chemists in deciding
what conformations are most likely to result in crystallizable structures when
produced in a laboratory.

4.28 Tabu Search for Portfolio Management

An important issue in portfolio management is how to measure and handle
risk. The challenge is to solve large problems that typically cannot be attacked
with non-linear programming methods. Rolland (1996) develops a tabu search
method that handles real valued decision variables by discretizing the problem
space in 1% and 0.1% increments, and by further incorporating a greedy search
to adjust the decision variables to real numbers “finer” than the 0.1% accuracy
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level. The moves alter their focus to comply with minimum variance and the
target return. The approach identified optimal solutions to all the random and
real-world problems it was tested on. Computation time was also very modest,
even for large problems with 100 or more assets. This approach recently has
been extended by Rolland and Johnson (1996) to be able to handle skewness
computations and targets.

4.29 Modeling Generalized Capacity
Requirements in Production Planning

Production planning problems that arise in real world applications are typically
attended by capacity requirements. The incorporation of generalized capacity
effects such as economies and diseconomies of scope and the learning-curve
effect gives rise to a capacity-consumption function that is nonlinear in the
tasks assigned to each facility. The resulting models for facility planning and
loading decisions often involve nonlinear optimization problems in which some
or all of the decision variables are integer-valued. The combined conditions
of nonlinearity and discreetness makes these problems exceedingly difficult to
solve.

Mazzola and Schantz (1995a) consider the resource allocation of a single fa-
cility under capacity-based economies and diseconomies of scope, and develop
two models for this problem. In the first (more general) model the capac-
ity of a single facility is considered to be a general function of the subset of
tasks selected to be produced. In the second model the capacity is assumed
to be consumed as a function of the number of tasks assigned to the facility.
These can be viewed as single-facility production loading models that capture
economies and diseconomies of scope within the production planning frame-
work. The problems arising within each of these models generalize both the
0-1 knapsack problem and the 0-1 collapsing knapsack problem. Tabu search
heuristics and branch-and-bound algorithms are defined for each model. Com-
putational testing shows the tabu search heuristics to be extremely effective in
obtaining high-quality solutions to these problems, including the more difficult
problems that exhibit a high degree of nonlinear behavior.

This study is extended in Mazzola and Schantz (1995b) to the multiple-facility
setting, focusing on under capacity-based economies (and diseconomies) of
scope (MFLS), including applications of MFLS in hierarchical production plan-
ning, group technology, and professional services. MFLS is formulated as a
nonlinear 0-1 mixed-integer programming problem which generalizes many well
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known and widely applicable optimization problems, such as the generalized as-
signment problem and the capacitated facility location problem. A tabu-search
heuristic and a branch-and-bound algorithm are developed for MFLS, and com-
putational testing of the solution procedures is discussed. Once again, tabu
search proves to be an effective approach for heuristically solving MFLS, and
is reported to be a powerful tool for capturing complex capacity requirements.

4.30 Continuous Optimization

A simple benchmark on a function with many suboptimal local minima is con-
sidered in Battiti and Tecchiolli (1994b), where a straightforward discretization
of the domain is used. A novel algorithm for the global optimization of functions
(C-RTS) is presented in Battiti and Tecchiolli (1995a), in which a combinatorial
optimization method cooperates with a stochastic local minimizer. The com-
binatorial optimization component, based on reactive tabu search, locates the
most promising boxes, where starting points for the local minimizer are gener-
ated. In order to cover a wide spectrum of possible applications with no user
intervention, the method is designed with adaptive mechanisms: in addition to
the reactive adaptation of the prohibition period, the box size is adapted to
the local structure of the function to be optimized (boxes are larger in “flat”
regions, smaller in regions with a “rough” structure).

4.31 Chunking in Tabu Search

Chunking — grouping basic units of information to create higher level units
— 1is a critical component of human intelligence. The tendency for people
to group information was described in the celebrated 1956 paper “The Magic
Number Seven: Plus or Minus Two” by G.A. Mitchell. Human problem solvers,
when faced with a hard problem, often proceed by linking and integrating
features they perceive as related and germane to the solution process. However,
people often prefer to organize problem data and problem solving methods in
a hierarchical fashion. When possible, they decompose the problem into sub-
problems and solve those. When the problem cannot be decomposed, a common
strategy is to form groupings of solution attributes so that the search space can
be reduced and higher level relationships can be discovered or exploited.

Woodruft (1995, 1996) identifies special types of chunking to enhance tabu
search memory structures, producing improved problem solving ability and
giving useful supporting information for decision makers. Although the pro-
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posals are most natural in the context of the tabu search paradigm, they can
also be employed in genetic algorithms and simulated annealing by omitting
links to memory based constructions. This work outlines theory and propos-
als for learning about chunks and using them. Computational experience to
date is briefly summarized to support the contention that chunking can be an
important part of effective optimization algorithms.

4.32 Production Planning with Work-Force
Learning

Mazzola, Neebe, and Rump (1995) consider a production planning problem in
which the work-force productivity for each product depends on the amount of
previous production of the product. This change in productivity is captured in
the corresponding resource coefficients that occur in the work-force requirement
constraint for each time period.

The model includes a learning effect in each period that depends on the level
of production of each product in the preceding period. The corresponding
work-force coefficient can increase, decrease, or remain the same, representing
a forgetting, learning, or status-quo production effect. The resulting problem is
modeled as a mixed-integer programming problem. In addition to establishing
problem complexity and defining a branch-and-bound algorithm for solving
the problem to optimality, this paper also examines heuristics for the problem.
A forward pass, linear programming-based heuristic previously defined in the
literature is examined and shown to produce arbitrarily bad solutions for this
problem. The paper then proposes a new tabu search heuristic for the problem.
Extensive computational experiments with the solution procedures establishes
the effectiveness of the tabu-search approach in this problem setting.

The TS approaches of this study are concluded to provide an ability to han-
dle new levels of modeling complexity, allowing for closer approximation of
real-world phenomena. The findings indicate that this is particularly true for
problems involving complex, nonlinear behavior involving discrete decision vari-
ables.
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4.33 Tabu Search Applied to Hub-and-Spoke
Communication Networks

The location of hub facilities is an important issue arising in the design of com-
munication networks. Applications include: traffic networks (airline passengers
flow and parcel delivery networks), as well as telecommunication networks (lo-
cation of digital switching offices for Digital Data Service (DDS) networks,
location of base stations for wireless networks).

In general, determining optimal locations of hub nodes and allocations of non-
hub nodes to those hubs is an NP-hard combinatorial problem. For a widely
used benchmark set of problems (the Civil Aeronautics Board (CAB) data set)
efficient tabu search algorithms and lower bounds for a class of uncapacitated
multiple and single allocation p-hub median problems have recently been de-
veloped which notably improve on results previously obtained. (Attempts to
solve the problems of the CAB data set have been undertaken in more than 70
research papers.)

Skorin-Kapov and Skorin-Kapov (1994) have developed an efficient tabu search
heuristic for the single allocation p-hub median problem, which models the
situation when n nodes can interact only via a set of fully interconnected hubs.
The hubs are uncapacitated, and their number 1s 1nitially prescribed. Using
the amount of flow and the cost per unit of flow between any two nodes in a
network, one has to decide on the location of hubs, and on the allocation of
each non-hub node to one of the hubs. The problem can be formulated as a
quadratic integer program with a nonconvex objective function. The new tabu
search approach, in addition to being efficient, obtains a number of new best
solutions for the CAB data set.

Skorin-Kapov et al. (1995) provide a novel way to further take advantage of
these improved heuristic outcomes by using high quality heuristic solutions to
derive lower bounds. Accompanying this, they provide tight linear program-
ming relaxations for the hub location and some other relevant uncapacitated
p-hub median problems that allow the CAB data set to be solved to optimality
for the first time. By this means, they verified that the solutions obtained by
the tabu search approach were in fact optimal for all of the test problems.

By exploiting the LP solution, and the best known heuristic solutions derived
from tabu search, integrality was quickly achieved by adding a partial set of
integrality constraints. This result, in turn, proved the optimality of the best
known tabu search heuristic solutions. Moreover, 1t provided a new approach
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of using the best known heuristic solution as a guidance in adding a partial set
of integrality constraints to achieve integer solutions for those instances whose
linear programming relaxations resulted with fractional solutions.

4.34 VLSI Systems with Learning
Capabilities

In contrast to the exhaustive design of systems for pattern recognition, control,
and vector quantization, an appealing possibility consists of specifying a gen-
eral architecture, whose parameters are then tuned through Machine Learning
(ML). ML becomes a combinatorial task if the parameters assume a discrete set
of values: a reactive tabu search algorithm developed by Battiti et al. (1994a,
1994b) permits the training of these systems with low number of bits per weight,
low computational accuracy, no local minima “trapping”, and limited sensitiv-
ity to the initial conditions.

A board with the TOTEM chip used for Machine Learning applications —
A project for IRST aims at developing special-purpose VLSI modules to be
used as components of fully autonomous massively-parallel systems for real-
time adaptive applications. Because of the intense use of parallelism at the
chip and system level and the limited precision used, the obtained perfor-
mance is competitive with that of state-of-the-art supercomputers (at a much
lower cost), while a high degree of flexibility is maintained through the use of
combinatorial algorithms. In particular, neural nets can be realized. In con-
trast to many “emulation” approaches, the developed VLSI completely reflects
the combinatorial structure used in the learning algorithms. The first chip
of the project (TOTEM, partially funded by INFN and EU (Esprit project
MInOSS) and designed at TRST achieves a performance of more than one bil-
lion multiply-accumulate operations. Applications considered are in the area
of pattern recognition (Optical Character Recognition), events “triggering” in
High Energy Physics [A+ ], control of non-linear systems (Battiti and Tecchiolli
(1995¢), compression of EEG signals [B+]. Test boards for ISA, PCI or VME

buses with software and technical documentation are available at IRST.
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4.35 A Tabu Search Approach for Routing
and Distribution

Rochat and Semet (1994) consider a real-life vehicle routing and distribution
problem that occurs in a major Swiss company producing pet food and flour. In
contrast with usual hypothetical problems, a large variety of restrictions must
be considered. The main constraints involve the accessibility and the time
windows at customers, the carrying capacities of vehicles, the total duration of
routes and the drivers’ breaks. The optimization problem for the transport plan
consists in elaborating a set of routes that minimizes the total travel distance
while satisfying the indicated constraints.

The general scheme used to solve this real-life VRP first applies a straightfor-
ward construction procedure to generate an initial solution which provides a
starting point for the tabu search procedure. The key features of the TS ap-
proach consist of a constraint relaxation strategy for diversification and an in-
tensification strategy. The relaxation of constraints makes it possible to expand
the solution space, diversifying the search by examining infeasible solutions as
well as feasible ones. The intensification strategy plays a complementary role,
and leads the search to visit solutions close to the best solution found so far by
rendering some routes tabu. Computational results show that the TS method
yields solutions dominating those of the constructive heuristic even when the
total number of iterations is small. Thus, good solutions are obtained in a rea-
sonable amount of CPU time. Moreover, the study shows that embedding the
TS algorithm in decision support software can be particularly useful. The fact
that the TS approach generates multiple solutions that have approximately the
same length of routes as the best makes it possible to propose several transport
plans to the user. Comparisons of the solutions produced with the routes actu-
ally covered by the company disclose that the total distance traveled is reduced
significantly by these solutions.

4.36 Tabu Search for Scheduling a Flow-Line
Manufacturing Cell

Effective scheduling of flow-lines for manufacturing cells improves the oper-
ational efficiency of manufacturing processes, leading to reductions in setup
costs, labor costs, tooling and inventory costs. This leads to further reductions
in throughput times and a corresponding increase in the shipment of on-time
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deliveries. A tabu search method for this problem has been proposed and suc-
cessfully implemented by Skorin-Kapov and Vakharia (1993).

A manufacturing cell consists of a group of similar machines located in close
proximity to one another and dedicated to the manufacture of a specific number
of part families. Part families consist of a set of jobs with similar processing
requirements. In this context, a feasible schedule S consists of a sequence of
part families and a sequence of jobs within each family in a manufacturing cell.
The tabu search heuristic of Skorin-Kapov and Vakharia efficiently schedules a
pure flow-line manufacturing cell under varying parameter conditions (given F
families, M machines and N(f) jobs in family f).

A collection of alternative tabu search strategies (designed to test different as-
pects of tabu search) was compared against state-of-the-art simulated annealing
heuristic that was tailored to solve this problem. Results from testing multiple
data sets with alternative ratios of family set up times to job processing times
showed the clear superiority of tabu search for these scheduling problems.

4.37 A Hybrid Scatter Genetic Tabu
Approach for Continuous Global
Optimization

A hybrid scatter genetic tabu search approach (HSGT) is proposed by Trafalis
and Al-Harkan (1995) to solve an unconstrained continuous nonlinear global
optimization problem. This approach combines the characteristics of the fol-
lowing metaheuristics: scatter search (SS), genetic algorithms (GAs), and tabu
search (TS). The proposed approach has been tested against a simulated anneal-
ing (SA) algorithm and a modified version of a hybrid scatter genetic search
approach (HSG) by optimizing twenty-one well known test functions. From
the computational results, the HSGT approach proved to be quite effective in
identifying the global optimum solution which makes the HSGT approach a
promising approach to solve the general nonlinear optimization problem. In
the hundred runs performed for each of the twenty-one functions, the HSGT
approach performed better than the HSG and the SA approaches, except for
one function. Also, the HSGT approach converged to a near global optimum
in CPU times ranged between 1.3 seconds and 19.55 seconds. The algorithm
was implemented in a GATEWAY 2000 (Pentium, P5-90) computer using the
Microsoft FORTRAN PowerStation version 4.
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4.38 Active Structural Acoustic Control

Active structural acoustic control is a method in which the control inputs used
to reduce interior noise are applied directly to a vibrating structural acoustic
system. The ultimate goal is to use active acoustic control to decrease the
interior noise in propeller driven jet aircraft. Kincaid (1995) studies the instance
of this problem in which the objective consists of damping noise generated by
a single exterior source in the interior of a cylinder.

The model requires a determination of the force inputs and sites for piezoelectric
actuators so that (1) the interior noise is effectively damped; (2) the level of
vibration of the cylinder shell is not increased; and (3) the power requirements
needed to drive the actuators are not excessive.

A tabu search approach was developed to determine the best set of actuator
sites to meet the three specified objectives. Experiments confirmed that the
TS procedure is able to uncover better solutions than those selected based
solely upon engineering judgement. In addition, the high quality solutions
generated by tabu search, when minimizing interior noise, do not further excite
the cylinder shell. Thus, it was possible to meet objective (2) without imposing
an additional constraint or forming a multi-objective performance measure.
The TS solutions also led to identifying natural groupings that require fewer
control channels and that permit a simpler control system.

4.39 Tabu Search for Automatic Graph
Drawing

Graphs are commonly used as a basic modeling tool in areas such as project
management, production scheduling, line balancing, business process reengi-
neering, and software visualization. Drawings of graphs are called maps and
their value for modeling and analysis is widely heralded in various fields of the
economic, social and computational sciences.

The main quality desired for maps is readability: A map 1s readable if its
meaning is easily captured by the way it is drawn. It is extremely difficult to
make a readable map by hand of a graph that represents a real system, even
when the graph size is relatively small. Therefore, an automatic procedure
for drawing graphs by computer is indispensable for generating readable maps
quickly.
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An important problem in the area of graph drawing is to minimize arc crossings
in a hierarchical digraph. It is customary to draw a hierarchical digraph by
placing the vertices on a set of equally spaced horizontal or vertical lines called
layers and then drawing the arcs as straight-line segments.

Valls, Marti and Lino (1995) provide a Tabu Thresholding (TT) approach for
the problem of minimizing the number of arc crossings in a 2-layer hierarchical
digraph (a bipartite digraph). The procedure combines elements of probabilis-
tic tabu search, candidate list strategies and thresholds, yielding a simplified
implementation of basic TS ideas that does not make explicit use of memory
structures.

The computational study has been carried out on a set of 250 randomly gen-
erated problems of varying sizes and densities. The TT algorithm has been
compared with the Greedy Switching (GS) algorithm and the Splitting (S) al-
gorithm, which are reported to be the best methods in the literature previously
available for graph drawing. Outcomes from the TT methods are also com-
pared with the optimal solutions for the test problems, in those cases where
the problems are small enough to permit them to be solved by state-of-the-art
exact methods. Results show that in the 130 test problems where an optimum
is available, the TT solution is optimal. Moreover in each of the 250 examples
tested, the TT solution and generally is superior (and never inferior) to the
best of those given by the GS and S heuristics.

4.40 Bipartite Graph Drawing with Tabu
Search

Marti (1995) has developed a TS heuristic for the problem of minimizing the
number of arc crossings in a bipartite graph. To perform an aggressive search for
the global optimum, the author has considered intensification, diversification,
influential moves and strategic oscillation elements of tabu search.

The procedure has three different search states: normal, influential and op-
posite, and oscillates among them according to the search history. In each
state there are two alternately applied phases, an intensification phase and a
diversification phase. The moves defined in the intensification are based on
a positioning function while those defined in the diversification are based on
permuting consecutive vertices. The use of different moves reinforces the non-
monotonic search strategy. The criteria for differentiating between “improving”
and “disimproving” moves within the oscillation strategy are not limited to the
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objective function evaluation, but consider factors of move influence, as deter-
mined by context and the search history.

Two variants of the general TS procedure are developed and compared with the
GS, SP, BC and SM methods and with the Tabu Thresholding (TT) heuristic.
The computational results show that both of these TS variants perform better
than the other methods, closely followed by the TT procedure, which in turn
also performs better than the methods remaining.

4.41 Layered Graph Drawing

Laguna, Marti and Valls (1995) propose a TS algorithm for the general k-layer
graph drawing problem (k greater than 2). Existing solution methods for this
problem are based on simple ordering rules for single layers that may lead to in-
ferior drawings. The Tabu Search implementation consists of an intensification
phase that seeks local optimal orderings of layers using an insertion move, and
two levels of diversification. The first level of diversification is a strategy for
selecting layers for intensification, while the second one escapes local optimal-
ity by means of switching moves. The authors utilize two different termination

criteria (TABU1 and TABU2).

Computational testing was performed on a set of 200 randomly generated in-
stances, including graphs with up to 571 vertices and 2,241 arcs. Comparisons
were performed with procedures that have shown to be effective for arc crossing
minimization, i.e., the barycentric and the semi media methods with switching

(BC+SW, SM+SW).

The results of the experiments show that in terms of solution quality the pro-
cedures are ranked in the order TABU2, TABU1, BC+SW, and SM+SW. In
terms of computational time, the tabu search version TABU1 1s quite competi-
tive with the procedures based on simple ordering rules plus switching, in spite
of yielding significantly better outcomes. This allows TABU1 to be considered
as a powerful procedure for real-time drawing (e.g., drawing on a computer
screen). When still higher quality drawings are important, at the cost of addi-
tional computational time, TABU2 obtains solutions with fewer arc crossings
with a maximum running time of 209 seconds.
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4.42 Finding a Good Forest Harvest Schedule
Satisfying Green-Up Constraints

A distinct change in public attitude toward the environment has led to demands
for a forest management paradigm shift from one of a dominant timber use
to one in which forests are managed for multiple values. Among the most
important implications of such a shift in policy on forest management was
the introduction of adjacency or green-up constraints. Green-up constraints
are imposed to avoid large clear cut areas. For example, in British Columbia
legislation requires that a block of forest which has been harvested must reach
a mean tree height of three meters before any adjacent block can be harvested.

One result of these green-up constraints is that the forest harvesting scheduling
problem, which previously was often formulated as a linear program, becomes
combinatorial in nature. Current harvest scheduling codes, like FORPLAN,
Timber RAM and others, are unable to generate harvest schedules satisfying
the green-up constraints. Brumelle et al. (1996) formulate forest harvesting
problems with green-up constraints arising in the Tangier watershed in British
Columbia as multicriteria discrete optimization problems.

The study considers two harvest scheduling problems associated with the Tang-
ier watershed. The small problem focuses on a 219 cut-block subset of the wa-
tershed located at the southern end. The northern boundary coincides with that
of the proposed Serenity Peaks Wilderness Area. The larger problem included
all 491 cut-blocks comprising the entire watershed, which will be appropriate
should the proposed park not eventuate.

Tabu search is used to investigate the trade-offs between different criteria, which
were chosen as the total volume of lumber cut, the period to period deviation
from even-flow of lumber during a harvest rotation and adjacency violations.
The tabu search methodology easily obtained good solutions to these problems,
and was shown to be much superior to a biased random search method which is
cited as one of the most effective methods to obtain good schedules satisfying
green-up constraints. In fact, the tabu search method generates schedules which
harvest more timber than the upper bound of the confidence interval suggested
by previous empirical and algorithmic analysis.
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APPENDIX A

THE MOST NEGLECTED TABU SEARCH
STRATEGIES — PROMISING AVENUES
FOR FUTURE RESEARCH

This appendix briefly reviews several key strategies in tabu search that are
often neglected (especially in beginning studies), but which are important for
producing the best results.

Our purpose is to call attention to the relevance of particular elements that may
be missed in a lengthier or more formal exposition. In addition, observations
about useful directions for future research are included.

A comment regarding implementation: first steps do not have to include the
most sophisticated variants of the 1deas described below, but the difference be-
tween “some inclusion” and “no inclusion” can be significant. Implementations
that incorporate simple instances of these ideas will often disclose the manner
in which refined implementations can lead to improved performance.

A.1 CANDIDATE LIST STRATEGIES

Efficiency and quality can be greatly affected by using intelligent procedures
for isolating effective candidate moves, rather than trying to evaluate every
possible move in a current neighborhood of alternatives. This 1s particularly
true when such a neighborhood is large or expensive to examine. The gains to
be achieved by using candidate lists have been widely documented, yet many
TS studies overlook their relevance.

Careful organization in applying candidate lists, as by saving evaluations from
previous iterations and updating them efficiently, can also be valuable for re-
ducing overall effort. Time saved in these ways allows a chance to devote more
time to higher level features of the search.

While the basic theme of candidate lists is straightforward, there are some
subtleties in the ways candidate list strategies may be used. Considerable
benefit can result by being aware of fundamental candidate list approaches, such
as the Subdivision Strategy, the Aspiration Plus Strategy, the Elite Candidate
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List Strategy, the Bounded Change Strategy and the Sequential Fan Strategy
(see, for example, Glover (1995b)).

An effective integration of a candidate list strategy with the rest of a tabu
search method will typically benefit by using TS memory designs to facilitate
functions to be performed by the candidate lists. This applies especially to the
use of frequency based memory. A major mistake of some TS implementations,
whether or not they make use of candidate lists, is to consider only the use of
recency based memory. Frequency based memory — which itself takes different
forms in intensification phases and diversification phases — can not only have
a dramatic impact on the performance of the search in general but also can
often yield gains in the design of candidate list procedures.

A.2 PROBABILISTIC TABU SEARCH

Several studies have suggested the value of a probabilistic version of TS, where
evaluations (including reference to tabu status) are translated into probabil-
ities of selection, strongly skewed to favor higher evaluations. Findings from
such studies support the notion that probabilities may partly substitute for
certain functions of memory (hence reduce the amount of memory needed) but
also suggest that probabilities may have a role in counteracting “noise” in the
evaluations.

In well designed TS implementations, the gains of probabilistic TS over de-
terministic TS are chiefly in accelerating the rate at which good solutions are
discovered in earlier stages of search. Overall, some settings appear more ex-
ploitable by probabilistic TS and others appear more exploitable by determin-
istic TS. The most effective forms of each type of approach depend strongly on
identifying and implementing TS strategies of the type described below.

A.3 INTENSIFICATION APPROACHES

Intensification strategies, which are based on recording and exploiting elite
solutions or, characteristically, specific features of these solutions, have proved
very useful in a variety of applications. Some of the relevant forms of such
strategies and considerations for implementing them are as follows.
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(1) The simplest intensification approach is the strategy of recovering elite so-
lutions in some order, each time the search progress slows, and then using these
solutions as a basis for re-initiating the search. The list of solutions that are
candidates to be recovered is generally limited in size, often in the range of 20
to 40 (although in parallel processing applications the number is characteris-
tically somewhat larger). The size chosen for the list in serial TS applications
also corresponds roughly to the number of solution recoveries anticipated to be
done during the search, and so may be less or more depending on the setting.
When an elite solution is recovered from the list, it is removed, and new elite
solutions are allowed to replace less attractive previous solutions — usually
dropping the worst of the current list members. However, if a new elite solu-
tion is highly similar to a solution presently recorded, instead of replacing the
current worst solution, the new solution will compete directly with its similar
counterpart to determine which solution is saved.

This approach has been applied very effectively in job shop and flow shop
scheduling, in vehicle routing, and in telecommunication design problems. One
of the best approaches for scheduling applications (see Section 3) keeps the old
TS memory associated with the solution, but makes sure the first new move
away from this solution goes to a different neighbor than the one visited after
encountering this solution the first time. Another effective variant does not
bother to save the old TS memory, but uses a probabilistic TS choice design.

The most common strategy is to go through the list from best to worst, but
in some cases 1t has worked even better to go through the list in the other
direction. In this approach, it appears effective to allow two passes of the list.
On the first pass, when a new elite solution is found that falls below the quality
of the solution currently recovered, but which is still better than the worst
already examined on the list, the method still adds the new solution to the list
and displaces the worst solution. Then a second pass, after reaching the top of
the list, recovers any added solutions not previously recovered.

(2) The other primary intensification strategy is to examine elite solutions to
determine the frequency in which particular solution attributes occur (where
the frequency is typically weighted by the quality of the solutions in which the
attributes are found).

This strategy was originally formulated in the context of identifying “consis-
tent” and “strongly determined” variables — where, loosely speaking, consis-
tent variables are those more frequently found in elite solutions, while strongly
determined variables are those that would cause the greatest disruption by
changing their values (as sometimes approximately measured by weighting the
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frequencies based on solution quality). The idea is to isolate the variables
that qualify as more consistent and strongly determined (according to varying
thresholds), and then to generate new solutions that give these variables their
“preferred values.” This can be done either by rebuilding new solutions in a
multistart approach or by modifying the choice rules of an ongoing solution
effort to favor the inclusion of these value assignments.

Keeping track of the frequency that elite solutions include particular attributes
(such as edges of tours, assignments of elements to positions, narrow ranges of
values taken on by variables, etc.) and then favoring the inclusion of the highest
frequency elements, effectively allows the search to concentrate on finding the
best supporting uses and values of other elements. A simple variant is to “lock
in” a small subset of the most attractive attributes (value assignments) —
allowing this subset to change over time or on different passes.

A Relevant Concern: In the approach that starts from a current (good) so-
lution, and tries to bring in favored elements, it i1s important to introduce an
element that yields a best outcome from among the current contenders. If
an attractive alternative move shows up during this process, which does not
involve bringing in one of these elements, aspiration criteria may determine
whether such a move should be taken instead. Under circumstances where the
outcome of such a move appears sufficiently promising, the approach may be
discontinued and allowed to enter an improving phase (reflecting a decision that
enough intensification has been applied, and it is time to return to searching
by customary means).

Intensification of this form makes it possible to determine what percent of “good
attributes” from prior solutions should be included in the solution currently
generated. It also gives information about which subsets of these attributes
should go together, since it 1s preferable not to choose attributes during this
process that cause the solution to deteriorate compared to other choices. This
type of intensification strategy has proved highly effective in the settings of
vehicle routing and zero-one mixed integer optimization.

(3) Memory and Intensification: Tt is clearly somewhat more dangerous to hold
elements “in” solution than to hold them “out” (considering that a solution
normally is composed of a small fraction of available elements — as where a
tree contains only a fraction of the edges of a graph). However, there is an
important exception, previously intimated. As part of a longer term intensifi-
cation strategy, elements may be selected very judiciously to be “locked in” on
the basis of having occurred with high frequency in the best solutions found.
In that case, choosing different mutually compatible (and mutually reinforc-
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ing) sets to lock in can be quite helpful. This creates a combinatorial implosion
effect (opposite to a combinatorial explosion effect) that shrinks the solution
space to a point where best solutions over the reduced space are likely to be
found more readily.

The key to this type of intensification strategy naturally is to select an appro-
priate set of elements to lock in, but the chances appear empirically to be quite
high that some subset of those with high frequencies in earlier best solutions
will be correct. Varying the subsets selected gives a significant likelihood of
picking a good one. (More than one subset can be correct, because different
subsets can still be part of the same complete set.) Aspiration criteria make it
possible to drop elements that are supposedly locked in, to give this approach
more flexibility.

(4) Relevance of Clustering for Intensification: A search process over a complex
space is likely to produce clusters of elite solutions, where one group of solutions
gives high frequencies for one set of attributes and another group gives high
frequencies for a different set. It is important to recognize this situation when
it arises. Otherwise there is a danger that an intensification strategy may try
to compel a solution to include attributes that work against each other. This is
particularly true in a strategy that seeks to generate a solution by incorporating
a collection of attributes “all at once,” rather than using a step by step eval-
uation process that is reapplied at each move through a neighborhood space.
(Stepping through a neighborhood has the disadvantage of being slower, but
may compensate by being more selective. Experimentation to determine the
circumstances under which each of these alternative intensification approaches
may be preferable would be quite valuable.)

A strategy that incorporates a block of attributes together may yield benefits
by varying both the size and composition of the subsets of high frequency
“attractive” attributes, even if these attributes are derived from solutions that
lie in a common cluster, since the truly best solutions may not include them
all. (An example of the relevance of clustering and related conditional analysis
is provided in Topic VI of the Appendix.)

A.4 DIVERSIFICATION APPROACHES

Diversification processes in tabu search are sometimes applied in ways that
limit their effectiveness, due to overlooking the fact that diversification is not
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just “random” or “impulsive,” but depends on a purposeful blend of memory
and strategy. As noted in Section 2, recency and frequency based memory are
both relevant for diversification, and stem in part from proposals to use such
ideas in surrogate constraint procedures. In this setting, the impetus is not
simply to achieve diversification, but to derive appropriate weights in order to
assure that evaluations will lead to solutions that satisfy required conditions.
Accordingly, it is important to account for elements such as how often, to what
extent, and how recently, particular constraints have been violated, in order to
determine weights that produce more effective valuations.

The implicit learning effects that underlie such uses of recency, frequency and
influence are analogous to those that motivate the procedures used for diver-
sification (and intensification) in tabu search. FEarly strategic oscillation ap-
proaches exploited this principle by driving the search to various depths out-
side (and inside) feasibility boundaries, and then employing evaluations and
directional search to move toward preferred regions.

In the same way that these early strategies bring diversification and intensifi-
cation together as part of a continuously modulated process, it is important to
stress that these two elements should be interwoven in general. A common mis-
take in many TS implementations is to apply diversification without regard for
intensification. “Pure” diversification strategies are appropriate for truly long
term strategies, but over the intermediate term, diversification is generally more
effective if it is applied by heeding information that is also incorporated in in-
tensification strategies. In fact, intensification by itself can sometimes cause
a form of diversification, because intensifying over part of the space allows a
broader search of the rest of the space. A few relevant concerns are as follows.

(1) Diversification and intensification links: A simple and natural diversifica-
tion approach is to keep track of the frequency that attributes occur in non-elite
solutions, and then to periodically discourage the incorporation of attributes
that have modest to high frequencies (giving greater penalties to larger frequen-
cies). The reference to non-elite solutions tends to avoid penalizing attributes
that would be encouraged by an intensification strategy.

More generally, for a “first level” balance, an Intermediate Term Memory ma-
trix may be used, where the high frequency items in elite solutions are not
penalized by the long term values, but may even be encouraged. The tradeoffs
involved in establishing the degree of encouragement, or the degree of reducing
the penalties, represents an area where a small amount of preliminary testing
can be valuable. This applies as well to picking thresholds to identify high fre-
quency items. (Simple guesses about appropriate parameter values can often
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yield benefits, and tests of such initial guesses can build an understanding that
leads to increasingly effective strategies.)

By extension, if an element has never or rarely been in a solution generated,
then it should be given a higher evaluation for being incorporated in a diver-
sification approach if it was “almost chosen” in the past but didn’t make the
grade. This observation has not been widely heeded, but is not difficult to
implement, and is relevant to intensification strategies as well.

(2) Tmplicit conflict and the importance of interactions: Current evaluations
also should not be disregarded while diversification influences are activated.
Otherwise, a diversification process may bring elements together that conflict
with each other, make it harder rather than easier to find improved solutions.

For example, a design that gives high penalties to a wide range of elements,
without considering interactions, may drive the solution to avoid good combi-
nations of elements. Consequently, diversification should be carried out for a
limited number of steps, accompanied by watching for and sidestepping situa-
tions where indiscriminately applying penalties would create incompatibilities
or severe deterioration of quality. To repeat the theme: even in diversification,
attention to quality is important. And as in “medical remedies,” sometimes
small doses are better than large ones.

(3) An approach called “Reactive Tabu Search” (RTS) developed by Battiti
and Tecchiolli (1992, 1994b) deserves consideration as a way to achieve a use-
ful blend of intensification and diversification. RTS incorporates hashing in
a highly effective manner to generate attributes that are very nearly able to
differentiate among distinct solutions (that is, very few solutions contain the
same hashed attribute). Accompanying this, B&T use an automated tabu
tenure, which begins with the value of 1 (preventing a hashed attribute from
being reinstated if this attribute gives the “signature” of the solution visited on
the immediately preceding step). This tenure is then increased if examination
shows the method is possibly cycling, as indicated by periodically generating
solutions that produce the same hashed attribute.

The tabu tenure, which is the same for all attributes, is increased exponentially
when repetitions are encountered, and decreased gradually when repetitions
disappear. Under circumstances where the search nevertheless encounters an
excessive number of repetitions within a given span (i.e., where a moving fre-
quency measure exceeds a certain threshold), a diversification step is activated,
which consists of making a number of random moves proportional to a moving
average of the cycle length.
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The reported successes of this approach invite further investigations of its un-
derlying ideas and related variants. As a potential bases for generating such
variants, attributes created by hashing may be viewed as fine grain attributes,
which give them the ability to distinguish among different solutions. By con-
trast, “standard” solution attributes, which are the raw material for hashing,
may be viewed as coarse grain attributes, since each may be contained in (and
hence provide a signature for) many different solutions. Experience has shown
that tabu restrictions based on coarse grain attributes are often advantageous
for giving increased vigor to the search. (There can exist a variety of ways of
defining and exploiting attributes, particularly at coarser levels; which compli-
cates the issue somewhat.) This raises the question of when particular degrees
of granularity are more effective than others.

It seems reasonable to suspect that fine grain attributes may yield greater
benefits if they are activated in the vicinity of elite solutions, thereby allowing
the search to scour “high quality terrain” more minutely. Of course, this effect
may also be achieved by reducing tabu tenures for coarse grain attributes — or
basing tabu restrictions on attribute conjunctions — and using more specialized
aspiration criteria. Closer scouring of critical regions can also be brought about
by using strongly focused candidate list strategies, such as a sequential fan
candidate list strategy. (Empirical comparisons of such alternatives to hashing
clearly would be of interest.)

However, another type of alternative to hashing also exists, which is to create
new attributes by processes that are not so uniform as hashing. A potential
drawback of hashing is its inability to distinguish the relative importance (and
appropriate influence) of the attributes that it seeks to map into others that
are fine grained. A potential way to overcome this drawback is to make use
of vocabulary building (Section 2) and of conditional analysis (Topic VI of the
Appendix). See Voss (1993), Carlton and Barnes (1995a, 1995b) and Woodruff
(1995, 1996) for useful related observations.

(4) Ejection chain approaches: Ejection chain methods provide an implicit
blending of diversification and intensification by generating compound moves
out of simpler components. Such approaches have provided breakthroughs in
handling certain types of tough problems, particularly those related to opti-
mization over graphs (see for example, Dorndorf and Pesch (1994), Laguna et
al. (1995), Pesch and Glover (1995), Rego and Roucairol (1996), Rego (1996a,
1996b)). TS memory structures can be used at two levels with ejection chains,
both at a simple internal level which operates primarily as a bookkeeping func-
tion to avoid duplicate patterns (as complex moves are woven from simpler
ones), and at an external level that guides the successively generated com-
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pound moves to go beyond conditions of local optimality. So far ejection chain
studies have chiefly focused on internal as opposed to external levels of control,
and new discoveries may be expected by broadening this focus. In addition,
opportunities exist in many settings for applications of ejection chains where
such forms of compound neighborhoods have so far remained uninvestigated.

A.5 STRATEGIC OSCILLATION

A considerable amount has been written on strategic oscillation and its advan-
tages. However, one of the uses of this approach that is frequently overlooked
involves the idea of oscillating among alternative choice rules and neighbor-
hoods. An important aspect of strategic oscillation is the fact that there nat-
urally arise different types of moves and choice rules that are appropriate for
negotiating different regions and different directions of search. Thus, for exam-
ple, there are many constructive methods in graph and scheduling problems,
but strategic oscillation further leads to the creation of complementary “de-
structive methods” which can operate together with their constructive coun-
terparts. Different criteria emerge as relevant for selecting a move to take on a
constructive step versus one to take on a destructive step. Similarly, different
criteria apply according to whether moves are chosen within a feasible region
or outside a feasible region (and whether the search is moving toward or away
from a feasibility boundary).

The variation among moves and evaluations introduces an inherent vitality into
the search that provides one of the sources underlying the success of strategic
oscillation approaches. This reinforces the motivation to apply strategic oscilla-
tion to the choice of moves and evaluation criteria themselves, selecting moves
from a pool of possibilities according to rules for transitioning from one choice
to another. In general, instead of picking a single rule, a process of invoking
multiple rules provides a range of alternatives that run all the way from “strong
diversification” to “strong intensification.”

This form of oscillation has much greater scope than may at first be apparent,
because i1t invokes the possibility of simultaneously integrating decision rules
and neighborhoods, rather than only visiting them in a strategically determined
sequence. To understand the considerations involved, 1t is useful to trace a brief
history of approaches that offer prototypes for such designs.
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Among the first of such approaches, an early study by Crowston et al. (1963)
examined ways to generate improved decision rules for job shop scheduling,
using a strategy of combining various standard local decision rules such as least-
waiting- time, first-come/first-serve, longest-time-remaining-to-completion, and
so forth. The decision rules were combined in two ways: (1) by choosing prob-
abilistically from the set of component rules at each decision point, and (2) by
integrating the rules into a “parametric rule” rather than by alternating among
them. The probabilistic combination approach began by giving equal proba-
bilities to selecting the rules, and then revised the probabilities of selection
according to the quality of the solution produced — increasing the probability
of applying a particular rule at a particular juncture if the current resulting
schedule turned out to be one of higher than usual quality. The parametric rule
approach first re-expressed the component rules to give them a common metric,
and then formulated a single composite rule as a weighted combination of the
components. The weight parameters were then systematically varied to find a
preferred combination, following the philosophy that it is more meaningful to
heed the input of different rules simultaneously, rather than to alternately give
priority to one or another input in isolation from the rest. (A bow and arrow
analogy was postulated, to suggest that it is better to simultaneously account
for factors such as wind direction, distance from the target, length of the draw,
and so forth, than to simply alternate among heeding these factors.) Both of
these two types of approaches improved over using any single decision rule, and
the parametric rule approach proved especially effective.

The probabilistic and parametric approaches were later unified and extended
(Glover and McMillan (1986)) to allow both rules and moves (hence neighbor-
hoods) to be integrated by means of a “generalized voting” concept. In ap-
plying this concept, the probabilistic element governs aspects of timing while
the parametric element allows different rules to vote on an outcome implic-
itly, by restructuring and joining the rules into a master rule. These forms
of integration can naturally be extended by making use of strategic oscillation
and path relinking approaches. Details of such extensions, based on generating
structured combinations of solutions, appear in Glover (1994a).

Such concepts are beginning to find counterparts in investigations being launched
by the computer science community. The “agent” terminology is being invoked
in such applications to characterize different choice mechanisms and neighbor-
hoods as representing different agents. Relying on this representation, different
agents then are assigned to work on (or “attack”) the problem serially or in
parallel. The CS community has begun to look upon this as a significant inno-
vation — unaware of the literature where such ideas were introduced a decade
or more ago — and the potential richness and variation of these ideas still seems
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not to be fully recognized. (For example, there have not yet been any studies
that consider the idea of “strategically sequencing” rules and neighborhoods,
let alone those that envision the notion of parametric integration. The fur-
ther incorporation of adaptive memory structures to enhance the application
of such concepts also lies somewhat outside the purview of most current CS
proposals.) At the same time, TS research has neglected to conduct empirical
investigations of the broader possibilities. This is clearly an area that deserves
fuller study.

A.6 CLUSTERING AND CONDITIONAL
ANALYSIS

To reinforce the theme of identifying opportunities for future research, we pro-
vide an illustration to clarify the relevance of clustering and conditional anal-
ysis, particularly as a basis for intensification and diversification strategies in
tabu research.

An Example: Suppose 40 elite solutions have been saved during the search,
and each solution is characterized as a vector x of zero-one variables z;, for
J €N ={l,...,n}. Assume the variables that receive positive values in at
least one of the elite solutions are indexed #; to #3p. (Commonly in such
circumstances, n may be expected to be somewhat larger than the number of
positive valued variables, e.g.; in this case, reasonable values may be n = 100

or 1000.)

For simplicity, we restrict attention to a simple weighted measure of consistency
which is given by the frequency that the variables z; to x3g receive the value 1
in these elite solutions. (We temporarily disregard weightings based on solution
quality and other aspects of “strongly determined” assignments.) Specifically,
assume the frequency measures are as shown in the following table:
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Variables z; = 1 | Number of Solutions

sl to 10 24
16 to 20 21
a1 to o5 17
Za6 tO 230 12

Since each of x1 to x15 receives a value of 1 in 24 of the 40 solutions, these
variables tie for giving “most frequent” assignments. An intensification strategy
that favors the inclusion of some number of such assignments would give equal
bias to introducing each of #; to #15 at the value 1. (Such a bias would typically
be administrated either by creating modified evaluations or by incorporating
probabilities based on such evaluations.)

To illustrate the relevance of clustering, suppose the collection of 40 elite so-
lutions can be partitioned into two subsets of 20 solutions each, whose charac-
teristics are summarized in the following table.
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Subset 1 (20 solutions) Subset 2 (20 solutions)
Variables z; =1 | No. of Solutions | Variables z; =1 | No. of Solutions
11 to 15 20 16 to 20 20
a1 to o5 16 e to 10 16
ry to &y 12 ry to x5 12
e to 10 8 26 to 30 8
26 to 30 4 11 to 15 4
16 to 20 1 a1 to a5 1

A very different picture now emerges. The variables z; to 15 no longer ap-
pear to deserve equal status as “most favored” variables. Treating them with
equal status may be a useful source of diversification, as opposed to intensifica-
tion, but the clustered data provide more useful information for diversification
concerns as well. In short, clustering gives a relevant contextual basis for de-
termining the variables (and combinations of variables) that should be given
special treatment.

Conditional Relationships

To go a step beyond the level of differentiation provided by cluster analysis, it
1s useful to sharpen the focus by referring explicitly to interactions among vari-
ables. Such interactions can often be identified in a very straightforward way,
and indeed can form a basis for more effective clustering. In many types of prob-
lems, the number of value assignments (or the number of “critical attributes”)
needed to specify a solution is relatively small compared to the total number
of problem variables. (For example, in routing, distribution and telecommu-
nication applications, the number of links contained in feasible constructions
is typically a small fraction of those contained in the underlying graph.) Us-
ing a 0-1 variable representation of possibilities, it is not unreasonable in such
cases to create a cross reference matrix, which identifies variables (or coded
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attributes) that simultaneously receive a value of 1 in a specific collection of
elite solutions.

To illustrate, suppose the index set P = {1,...,p} identifies the variables «;
that receive a value of 1 in at least r solutions from the collection of elite
solutions under consideration. (Apart from other strategic considerations, the
parameter 7 can also be used to control the size of p, since larger values of r
result in smaller values of p.)

Then we create a p x p symmetric matrix M whose entries m;; identify the
number of solutions in which #; and #; are both 1. (Thus, row M; of M repre-
sents the sum of the solution vectors in which #; = 1, restricted to components
x; for j € P.) The value m;; identifies the total number of elite solutions in
which z; = 1, and the value m;;/m;; represents the “conditional probability”
that z; = 1 in this subset of solutions. Because p can be controlled to be of
modest size, as by the choice of r and the number of solutions admitted to the
elite set, the matrix M is not generally highly expensive to create or maintain.

By means of the conditional probability interpretation, the entries of M give
a basis for a variety of analyses and choice rules for incorporating preferred
attributes into new solutions. Once an assignment z; = 1 is made in a solu-
tion currently under consideration (which may be either partly or completely
constructed), an updated conditional matrix M can be created by restricting
attention to elite solution vectors for which #; = 1. (Restricted updates of this
form can also be used for look-ahead purposes.) Weighted versions of M, whose
entries additionally reflect the quality of solutions in which specific assignments
occur, likewise can be used.

Critical event memory (Glover (1995¢), Glover and Kochenberger (1996)), pro-
vides a convenient mechanism to maintain appropriate variation when condi-
tional influences are taken into account. The “critical solutions” associated with
such memory in the present case are simply those constituting a selected subset
of elite solutions. Frequency measures for value assignments can be obtained
by summing these solution vectors for problems with 0-1 representations and
the critical event control mechanisms can then assure assignments are chosen
to generate solutions that differ from those of previous elite solutions.

Conditional analysis, independent of such memory structures, can also be a use-
ful foundation for generating solution fragments to be exploited by vocabulary
building processes, as discussed in Section 2.
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A.7 REFERENT-DOMAIN
OPTIMIZATION

Referent-domain optimization is based on introducing one or more optimization
models to strategically restructure the problem or neighborhood, accompanied
by auxiliary heuristic or algorithmic process to map the solutions back to the
original problem space. The optimization models are characteristically devised
to embody selected heuristic goals (e.g., of intensification, diversification or
both), within the context of particular classes of problems.

There are several ways to control the problem environment as a basis for ap-
plying referent-domain optimization. A natural control method is to limit the
structure and range of parameters that define a neighborhood (or the rules used
to navigate through a neighborhood), and to create an optimization model that
operates under these restricted conditions.

Example 1: The use of specially constructed neighborhoods (and aggregations
or partitions of integer variables) permits the application of mixed integer pro-
gramming (MIP) models to identify the best options from all moves of depth
at most k (or from associated collections of at most k variables). When k is
sufficiently small, such MIP models can be quite tractable, and produce moves
considerably more powerful than those provided by lower level heuristics.

Example 2: In problems with graph-related structures, the imposition of di-
rectionality or non-looping conditions gives a basis for devising generalized
shortest path (or dynamic programming) models to generate moves that are
optimal over a significant subclass of possibilities. This type of approach gives
rise to a combinatorial leverage phenomenon, where a low order effort (e.g.,
linear or quadratic) can yield solutions that dominate exponential numbers of

alternatives. (See, e.g., Glover (1992), Rego and Roucairol (1996).)

Example 3: A broadly applicable control strategy, similar to that of a relaxation
procedure, but more flexible, is to create a proxy model that “resembles” the
original problem of interest, and which is easier to solve. Such an approach must
be accompanied with a method to transform the solution to the proxy model
into a trial solution for the original problem. A version of such an approach,
which also can be used to induce special structure into the proxy model, can
be patterned after layered surrogate/lagrangian decomposition strategies for
mixed integer optimization.
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Referent-domain optimization can also be applied in conjunction with the tar-
get analysis learning approach, to provide a basis for creating more effective
solution strategies (Glover and Laguna (1992), Glover (1995b), Lgkketangen
and Glover (1996)). In this case, a first stage learning model, based on con-
trolled solution attempts, identifies a set of desired properties of good solutions,
together with target solutions (or target regions) that embody these proper-
ties. Then a second stage model is devised to generate neighborhoods and
choice rules to take advantage of the outcomes of the learning model. Useful
strategic possibilities are created by basing these two models on a proxy model
for referent-domain optimization, to structure the outcomes so that they may
be treated by one of the control methods indicated in the foregoing examples.
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